Skip to main content

Advertisement

Log in

White matter microglia heterogeneity in the CNS

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Microglia, the resident myeloid cells in the central nervous system (CNS) play critical roles in shaping the brain during development, responding to invading pathogens, and clearing tissue debris or aberrant protein aggregations during ageing and neurodegeneration. The original concept that like macrophages, microglia are either damaging (pro-inflammatory) or regenerative (anti-inflammatory) has been updated to a kaleidoscope view of microglia phenotypes reflecting their wide-ranging roles in maintaining homeostasis in the CNS and, their contribution to CNS diseases, as well as aiding repair. The use of new technologies including single cell/nucleus RNA sequencing has led to the identification of many novel microglia states, allowing for a better understanding of their complexity and distinguishing regional variations in the CNS. This has also revealed differences between species and diseases, and between microglia and other myeloid cells in the CNS. However, most of the data on microglia heterogeneity have been generated on cells isolated from the cortex or whole brain, whereas white matter changes and differences between white and grey matter have been relatively understudied. Considering the importance of microglia in regulating white matter health, we provide a brief update on the current knowledge of microglia heterogeneity in the white matter, how microglia are important for the development of the CNS, and how microglial ageing affects CNS white matter homeostasis. We discuss how microglia are intricately linked to the classical white matter diseases such as multiple sclerosis and genetic white matter diseases, and their putative roles in neurodegenerative diseases in which white matter is also affected. Understanding the wide variety of microglial functions in the white matter may provide the basis for microglial targeted therapies for CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J et al (2021) A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597:709–714. https://doi.org/10.1038/s41586-021-03892-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adams SJ, Kirk A, Auer RN (2018) Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): Integrating the literature on hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). J Clin Neurosci 48:42–49. https://doi.org/10.1016/j.jocn.2017.10.060

    Article  PubMed  Google Scholar 

  3. Agarwal M, Biswas P, Bhattacharya A, Sinha DK (2020) Reactive oxygen species-mediated cytoplasmic stiffening impairs the phagocytic ability of the macrophage. J Cell Sci. https://doi.org/10.1242/jcs.236471

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z et al (2018) Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 21:541–551. https://doi.org/10.1038/s41593-018-0100-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allen SJ, Baker D, O’Neill JK, Davison AN, Turk JL (1993) Isolation and characterization of cells infiltrating the spinal cord during the course of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. Cell Immunol 146:335–350. https://doi.org/10.1006/cimm.1993.1031

    Article  CAS  PubMed  Google Scholar 

  6. Amici SA, Dong J, Guerau-de-Arellano M (2017) Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol 8:1520. https://doi.org/10.3389/fimmu.2017.01520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405. https://doi.org/10.1016/j.celrep.2016.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A et al (2020) Negative feedback control of neuronal activity by microglia. Nature 586:417–423. https://doi.org/10.1038/s41586-020-2777-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baker D, Amor S (2015) Mouse models of multiple sclerosis: lost in translation? Curr Pharm Des 21:2440–2452. https://doi.org/10.2174/1381612821666150316122706

    Article  CAS  PubMed  Google Scholar 

  10. Baker D, Herrod SS, Alvarez-Gonzalez C, Zalewski L, Albor C, Schmierer K (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurology-Neuroimmunology Neuroinflammation 4

  11. Baror R, Neumann B, Segel M, Chalut KJ, Fancy SPJ, Schafer DP et al (2019) Transforming growth factor-beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia 67:1374–1384. https://doi.org/10.1002/glia.23612

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bauer J, Ruuls SR, Huitinga I, Dijkstra CD (1996) The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 28:83–97. https://doi.org/10.1007/BF02331413

    Article  CAS  PubMed  Google Scholar 

  13. Beckmann N, Giorgetti E, Neuhaus A, Zurbruegg S, Accart N, Smith P et al (2018) Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol Commun 6:9. https://doi.org/10.1186/s40478-018-0510-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellver-Landete V, Bretheau F, Mailhot B, Vallieres N, Lessard M, Janelle ME et al (2019) Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun 10:518. https://doi.org/10.1038/s41467-019-08446-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113:E1738-1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergner CG, van der Meer F, Winkler A, Wrzos C, Turkmen M, Valizada E et al (2019) Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 67:1196–1209. https://doi.org/10.1002/glia.23598

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bottcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A, Paza E et al (2019) Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 22:78–90. https://doi.org/10.1038/s41593-018-0290-2

    Article  CAS  PubMed  Google Scholar 

  18. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE 7:e39216. https://doi.org/10.1371/journal.pone.0039216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. https://doi.org/10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  20. Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 18:557–564. https://doi.org/10.1093/neuonc/nov245

    Article  PubMed  Google Scholar 

  21. Chen JF, Liu K, Hu B, Li RR, Xin W, Chen H et al (2021) Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109(2292–2307):e2295. https://doi.org/10.1016/j.neuron.2021.05.012

    Article  CAS  Google Scholar 

  22. Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N et al (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919. https://doi.org/10.1016/j.cell.2020.06.038

    Article  CAS  Google Scholar 

  23. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418. https://doi.org/10.1007/s11481-009-9164-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647. https://doi.org/10.1084/jem.20180247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Erchia AM, Gallo A, Manzari C, Raho S, Horner DS, Chiara M et al (2017) Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep 7:10046. https://doi.org/10.1038/s41598-017-10488-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S et al (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–120. https://doi.org/10.1182/blood.v99.1.111

    Article  CAS  PubMed  Google Scholar 

  27. Dardiotis E, Siokas V, Pantazi E, Dardioti M, Rikos D, Xiromerisiou G et al (2017) A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2017.01.015

    Article  PubMed  Google Scholar 

  28. Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370–1379. https://doi.org/10.1038/s41593-018-0236-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Biase LM, Bonci A (2019) Region-specific phenotypes of microglia: the role of local regulatory cues. Neuroscientist 25:314–333. https://doi.org/10.1177/1073858418800996

    Article  PubMed  Google Scholar 

  30. Dols-Icardo O, Montal V, Sirisi S, Lopez-Pernas G, Cervera-Carles L, Querol-Vilaseca M et al (2020) Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 7:e829. https://doi.org/10.1212/NXI.0000000000000829

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dubbelaar ML, Kracht L, Eggen BJL, Boddeke E (2018) The kaleidoscope of microglial phenotypes. Front Immunol 9:1753. https://doi.org/10.3389/fimmu.2018.01753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. https://doi.org/10.1016/j.neuron.2014.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elmore MRP, Hohsfield LA, Kramar EA, Soreq L, Lee RJ, Pham ST et al (2018) Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 17:e12832. https://doi.org/10.1111/acel.12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6:e26317. https://doi.org/10.1371/journal.pone.0026317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P et al (2017) Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation 14:48. https://doi.org/10.1186/s12974-017-0814-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin - from mechanisms to experimental medicines. Nat Rev Neurosci 18:753–769. https://doi.org/10.1038/nrn.2017.136

    Article  CAS  PubMed  Google Scholar 

  37. Garcia JA, Cardona SM, Cardona AE (2013) Analyses of microglia effector function using CX3CR1-GFP knock-in mice. Methods Mol Biol 1041:307–317. https://doi.org/10.1007/978-1-62703-520-0_27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garcia LM, Hacker JL, Sase S, Adang L, Almad A (2020) Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 146:105087. https://doi.org/10.1016/j.nbd.2020.105087

    Article  CAS  PubMed  Google Scholar 

  39. Gelfand JM, Cree BAC, Hauser SL (2017) Ocrelizumab and Other CD20(+) B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics 14:835–841. https://doi.org/10.1007/s13311-017-0557-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, Lambourne M et al (2021) Distinct amyloid-beta and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol 141:681–696. https://doi.org/10.1007/s00401-021-02263-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN et al (2019) Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176(43–55):e13. https://doi.org/10.1016/j.cell.2018.10.049

    Article  CAS  Google Scholar 

  42. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S et al (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626. https://doi.org/10.1038/nn.3531

    Article  CAS  PubMed  Google Scholar 

  44. Goldmann T, Zeller N, Raasch J, Kierdorf K, Frenzel K, Ketscher L et al (2015) USP 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34:1612–1629

    Article  CAS  Google Scholar 

  45. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science. https://doi.org/10.1126/science.aal3222

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP et al (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516. https://doi.org/10.1038/nn.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Green KN, Crapser JD, Hohsfield LA (2020) To Kill a Microglia: A Case for CSF1R Inhibitors. Trends Immunol 41:771–784. https://doi.org/10.1016/j.it.2020.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greenfield AL, Hauser SL (2018) B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 83:13–26. https://doi.org/10.1002/ana.25119

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gudi V, Moharregh-Khiabani D, Skripuletz T, Koutsoudaki PN, Kotsiari A, Skuljec J et al (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138. https://doi.org/10.1016/j.brainres.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  50. Gyoneva S, Hosur R, Gosselin D, Zhang B, Ouyang Z, Cotleur AC et al (2019) Cx3cr1-deficient microglia exhibit a premature aging transcriptome. Life Sci Alliance. https://doi.org/10.26508/lsa.201900453

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES, Stanley ER et al (2017) Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:441–458. https://doi.org/10.1007/s00401-017-1747-1

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hakola HP, Jarvi OH, Sourander P (1970) Osteodysplasia polycystica hereditaria combined with sclerosing leucoencephalopathy, a new entity of the dementia praesenilis group. Acta Neurol Scand 46:79–80

    Article  CAS  Google Scholar 

  53. Hakola HPA (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycytic osteodysplasia. Acta Psychiatr Scand Suppl 232:1–173

    CAS  PubMed  Google Scholar 

  54. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(253–271):e256. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  Google Scholar 

  55. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95:10896–10901. https://doi.org/10.1073/pnas.95.18.10896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA (2021) Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 24:1475–1487. https://doi.org/10.1038/s41593-021-00905-6

    Article  CAS  PubMed  Google Scholar 

  57. Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB et al (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40:2960–2974. https://doi.org/10.1523/JNEUROSCI.2402-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hirono N, Kitagaki H, Kazui H, Hashimoto M, Mori E (2000) Impact of white matter changes on clinical manifestation of Alzheimer’s disease: a quantitative study. Stroke 31:2182–2188. https://doi.org/10.1161/01.str.31.9.2182

    Article  CAS  PubMed  Google Scholar 

  59. Jacobs AJ, Castillo-Ruiz A, Cisternas CD, Forger NG (2019) Microglial depletion causes region-specific changes to developmental neuronal cell death in the mouse brain. Dev Neurobiol 79:769–779. https://doi.org/10.1002/dneu.22706

    Article  CAS  PubMed  Google Scholar 

  60. Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H et al (2019) Lipid-associated macrophages control metabolic homeostasis in a trem2-dependent manner. Cell 178(686–698):e614. https://doi.org/10.1016/j.cell.2019.05.054

    Article  CAS  Google Scholar 

  61. Jang H, Kwon H, Yang JJ, Hong J, Kim Y, Kim KW et al (2017) Correlations between gray matter and white matter degeneration in pure alzheimer’s disease, pure subcortical vascular dementia, and mixed dementia. Sci Rep 7:9541. https://doi.org/10.1038/s41598-017-10074-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413. https://doi.org/10.1038/s41588-018-0311-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jensen SK, Michaels NJ, Ilyntskyy S, Keough MB, Kovalchuk O, Yong VW (2018) Multimodal enhancement of remyelination by exercise with a pivotal role for oligodendroglial PGC1alpha. Cell Rep 24:3167–3179. https://doi.org/10.1016/j.celrep.2018.08.060

    Article  CAS  PubMed  Google Scholar 

  64. Jordao MJC, Sankowski R, Brendecke SM, Sagar LG, Tai YH, Tay TL et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science. https://doi.org/10.1126/science.aat7554

    Article  PubMed  Google Scholar 

  65. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. https://doi.org/10.1128/MCB.20.11.4106-4114.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:198. https://doi.org/10.3389/fncel.2020.00198

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kaiser T, Feng G (2019) Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro. https://doi.org/10.1523/ENEURO.0448-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP et al (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235–2245. https://doi.org/10.1084/jem.20180653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kempthorne L, Yoon H, Madore C, Smith S, Wszolek ZK, Rademakers R et al (2020) Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathol Commun 8:72. https://doi.org/10.1186/s40478-020-00947-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(1276–1290):e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  Google Scholar 

  71. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. https://doi.org/10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  72. Kim CC, Nakamura MC, Hsieh CL (2016) Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 13:117. https://doi.org/10.1186/s12974-016-0581-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kondo Y, Duncan ID (2009) Selective reduction in microglia density and function in the white matter of colony-stimulating factor-1-deficient mice. J Neurosci Res 87:2686–2695. https://doi.org/10.1002/jnr.22096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kracht L, Borggrewe M, Eskandar S, Brouwer N, de Sousa C, Lopes SM et al (2020) Human fetal microglia acquire homeostatic immune-sensing properties early in development. Science 369:530–537. https://doi.org/10.1126/science.aba5906

    Article  CAS  PubMed  Google Scholar 

  75. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712. https://doi.org/10.1093/brain/awh641

    Article  PubMed  Google Scholar 

  76. Lall D, Lorenzini I, Mota TA, Bell S, Mahan TE, Ulrich JD et al (2021) C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 109(2275–2291):e2278. https://doi.org/10.1016/j.neuron.2021.05.020

    Article  CAS  Google Scholar 

  77. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170. https://doi.org/10.1016/0306-4522(90)90229-w

    Article  CAS  PubMed  Google Scholar 

  78. Levit A, Regis AM, Gibson A, Hough OH, Maheshwari S, Agca Y et al (2019) Impaired behavioural flexibility related to white matter microgliosis in the TgAPP21 rat model of Alzheimer disease. Brain Behav Immun 80:25–34. https://doi.org/10.1016/j.bbi.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  79. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J et al (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101(207–223):e210. https://doi.org/10.1016/j.neuron.2018.12.006

    Article  CAS  Google Scholar 

  80. Li R, Patterson KR, Bar-Or A (2018) Reassessing B cell contributions in multiple sclerosis. Nat Immunol 19:696–707. https://doi.org/10.1038/s41590-018-0135-x

    Article  CAS  PubMed  Google Scholar 

  81. Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D et al (2019) Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nature Neurosci 22:1046. https://doi.org/10.1038/s41593-019-0418-Z

    Article  CAS  PubMed  Google Scholar 

  82. Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15:447–458. https://doi.org/10.1038/s41582-019-0184-2

    Article  PubMed  Google Scholar 

  83. Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A et al (2019) Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364:89–93. https://doi.org/10.1126/science.aav9776

    Article  CAS  PubMed  Google Scholar 

  84. Marteyn A, Baron-Van Evercooren A (2016) Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res 94:1572–1578. https://doi.org/10.1002/jnr.23931

    Article  CAS  PubMed  Google Scholar 

  85. Martin E, El-Behi M, Fontaine B, Delarasse C (2017) Analysis of microglia and monocyte-derived macrophages from the central nervous system by flow cytometry. J Vis Exp 2017:1–7. https://doi.org/10.3791/55781

    Article  CAS  Google Scholar 

  86. Masuda T, Amann L, Sankowski R, Staszewski O et al (2020) Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol 21:802–815. https://doi.org/10.1038/s41590-020-0707-4

    Article  CAS  PubMed  Google Scholar 

  87. Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  88. Masuda T, Sankowski R, Staszewski O, Prinz M (2020) Microglia heterogeneity in the single-cell era. Cell Rep 30:1271–1281. https://doi.org/10.1016/j.celrep.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  89. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science. https://doi.org/10.1126/science.aad8670

    Article  PubMed  Google Scholar 

  90. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ et al (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570:332–337. https://doi.org/10.1038/s41586-019-1195-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K et al (2014) Motor skill learning requires active central myelination. Science 346:318–322. https://doi.org/10.1126/science.1254960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McKinsey GL, Lizama CO, Keown-Lang AE, Niu A, Santander N, Larpthaveesarp A et al (2020) A new genetic strategy for targeting microglia in development and disease. Elife 9:e54590. https://doi.org/10.7554/eLife.54590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci. https://doi.org/10.3390/ijms19010318

    Article  PubMed  PubMed Central  Google Scholar 

  94. Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD et al (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163–1174. https://doi.org/10.1084/jem.20151529

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miedema A, Gerrits E, Brouwer N, Jiang Q, Kracht L, Meijer M et al (2021) Brain macrophages acquire distinct transcriptomes prior to demyelination in multiple sclerosis. bioRxiv. https://doi.org/10.1101/2021.10.27.465877

    Article  Google Scholar 

  96. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218. https://doi.org/10.1038/nn.3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miron VE, Priller J (2020) Investigating microglia in health and disease: challenges and opportunities. Trends Immunol 41:785–793. https://doi.org/10.1016/j.it.2020.07.002

    Article  CAS  PubMed  Google Scholar 

  98. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. https://doi.org/10.1016/j.immuni.2018.01.011

    Article  PubMed  Google Scholar 

  99. Nasu T, Tsukahara Y, Terayama K (1973) A lipid metabolic disease—“membranous lipodystrophy”—an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Pathol Int 23:539–558

    Article  CAS  Google Scholar 

  100. Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nunez V, Johnson KR et al (2015) Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138:3581–3597. https://doi.org/10.1093/brain/awv289

    Article  PubMed  PubMed Central  Google Scholar 

  101. Oda M (1983) Familial sudanophilic leukodystrophy with multiple and semisystematic spongy foci: Autopsy report of three adult females. International Symposium on the Leukodystrophy and Allied Diseases. Neuropathology: 173–185

  102. Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9:539. https://doi.org/10.1038/s41467-018-02926-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, Ijcken WFJ et al (2018) Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep 24(1203–1217):e1206. https://doi.org/10.1016/j.celrep.2018.06.113

    Article  CAS  Google Scholar 

  104. Oyanagi K, Kinoshita M, Suzuki-Kouyama E, Inoue T, Nakahara A, Tokiwai M et al (2017) Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets. Brain Pathol 27:748–769. https://doi.org/10.1111/bpa.12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Paloneva J, Autti T, Raininko R, Partanen J, Salonen O, Puranen M et al (2001) CNS manifestations of Nasu-Hakola disease: a frontal dementia with bone cysts. Neurology 56:1552–1558. https://doi.org/10.1212/wnl.56.11.1552

    Article  CAS  PubMed  Google Scholar 

  106. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R et al (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662. https://doi.org/10.1086/342259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Peferoen LA, Vogel DY, Ummenthum K, Breur M, Heijnen PD, Gerritsen WH et al (2015) Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 74:48–63. https://doi.org/10.1097/NEN.0000000000000149

    Article  CAS  PubMed  Google Scholar 

  109. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400. https://doi.org/10.1002/ana.1123

    Article  CAS  PubMed  Google Scholar 

  110. Petrik MS, Wilson JM, Grant SC, Blackband SJ, Tabata RC, Shan X et al (2007) Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals widespread neural deficits. Neuromolecular Med 9:216–229. https://doi.org/10.1007/s12017-007-8002-1

    Article  CAS  PubMed  Google Scholar 

  111. Petrova N, Nutma E, Carassiti D, Rs Newman J, Amor S, Altmann DR et al (2020) Synaptic loss in multiple sclerosis spinal cord. Ann Neurol 88:619–625. https://doi.org/10.1002/ana.25835

    Article  CAS  PubMed  Google Scholar 

  112. Plemel JR, Stratton JA, Michaels NJ, Rawji KS, Zhang E, Sinha S et al (2020) Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv. https://doi.org/10.1126/sciadv.aay6324

    Article  PubMed  PubMed Central  Google Scholar 

  113. Raj D, Yin Z, Breur M, Doorduin J, Holtman IR, Olah M et al (2017) Increased white matter inflammation in aging- and Alzheimer’s disease brain. Front Mol Neurosci 10:206. https://doi.org/10.3389/fnmol.2017.00206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  115. Rawji KS, Young AMH, Ghosh T, Michaels NJ, Mirzaei R, Kappen J et al (2020) Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol 139:893–909. https://doi.org/10.1007/s00401-020-02129-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H et al (2021) White matter aging drives microglial diversity. Neuron 109(1100–1117):e1110. https://doi.org/10.1016/j.neuron.2021.01.027

    Article  CAS  Google Scholar 

  117. Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I et al (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to abeta plaques. Cell Rep 27(1293–1306):e1296. https://doi.org/10.1016/j.celrep.2019.03.099

    Article  CAS  Google Scholar 

  118. Sankowski R, Bottcher C, Masuda T, Geirsdottir L, Sagar SE, Seredenina T et al (2019) Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci 22:2098–2110. https://doi.org/10.1038/s41593-019-0532-y

    Article  CAS  PubMed  Google Scholar 

  119. Sariol A, Mackin S, Allred MG, Ma C, Zhou Y, Zhang Q (2020) Microglia depletion exacerbates demyelination and impairs remyelination in a neurotropic coronavirus infection. Proc Natl Acad Sci U S A 117:24464–24474. https://doi.org/10.1073/pnas.2007814117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D et al (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82. https://doi.org/10.1038/s41586-019-1404-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. https://doi.org/10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  122. Schwabenland M, Mossad O, Peres AG, Kessler F, Maron FJM, Harsan LA et al (2019) Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol Commun 7:106. https://doi.org/10.1186/s40478-019-0757-8

    Article  PubMed  PubMed Central  Google Scholar 

  123. See P, Lum J, Chen J, Ginhoux F (2018) A single-cell sequencing guide for immunologists. Front Immunol 9:2425. https://doi.org/10.3389/fimmu.2018.02425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E et al (2020) Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to TAU pathology. EMBO Mol Med 12:e10606. https://doi.org/10.15252/emmm.201910606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Bruck W (2013) Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 125:595–608. https://doi.org/10.1007/s00401-013-1082-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Snook ER, Fisher-Perkins JM, Sansing HA, Lee KM, Alvarez X, MacLean AG et al (2014) Innate immune activation in the pathogenesis of a murine model of globoid cell leukodystrophy. Am J Pathol 184:382–396. https://doi.org/10.1016/j.ajpath.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  CAS  PubMed  Google Scholar 

  128. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC et al (2020) Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105(150–164):e156. https://doi.org/10.1016/j.neuron.2019.10.013

    Article  CAS  Google Scholar 

  129. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L et al (2013) A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci 33:13460–13474. https://doi.org/10.1523/JNEUROSCI.1333-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stout JC, Jernigan TL, Archibald SL, Salmon DP (1996) Association of dementia severity with cortical gray matter and abnormal white matter volumes in dementia of the Alzheimer type. Arch Neurol 53:742–749. https://doi.org/10.1001/archneur.1996.00550080056013

    Article  CAS  PubMed  Google Scholar 

  131. Svensson V, Nath K, Natarajan L-H, Miragaia RJ, Labalette C, Macaulay IC (2017) Power analysis of single cell RNA-sequencing experiments Europe PMC Funders Group. Nat Methods 14:381–387. https://doi.org/10.1038/nmeth.4220.Power

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L et al (2016) Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7:11499. https://doi.org/10.1038/ncomms11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tada M, Konno T, Tada M, Tezuka T, Miura T, Mezaki N et al (2016) Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids. Ann Neurol 80:554–565. https://doi.org/10.1002/ana.24754

    Article  CAS  PubMed  Google Scholar 

  134. Takata K, Ginhoux F (2015) Poised for action: USP18 restrains microglial activation in the white matter. EMBO J 34:1603–1605. https://doi.org/10.15252/embj.201591899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tanaka J (2000) Nasu-Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology 20(Suppl):S25-29. https://doi.org/10.1046/j.1440-1789.2000.00297.x

    Article  PubMed  Google Scholar 

  136. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar DM et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803. https://doi.org/10.1038/nn.4547

    Article  CAS  PubMed  Google Scholar 

  137. Thomas WE (1990) Characterization of the dynamic nature of microglial cells. Brain Res Bull 25:351–354. https://doi.org/10.1016/0361-9230(90)90083-c

    Article  CAS  PubMed  Google Scholar 

  138. Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B et al (2014) Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 261:1–16. https://doi.org/10.1007/s00415-013-7169-7

    Article  CAS  PubMed  Google Scholar 

  139. van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134:351–382. https://doi.org/10.1007/s00401-017-1739-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia SKG et al (2019) Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 10:1139. https://doi.org/10.1038/s41467-019-08976-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L et al (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:1–9

    Article  Google Scholar 

  142. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, Prijck S et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035. https://doi.org/10.1038/s41593-019-0393-4

    Article  CAS  PubMed  Google Scholar 

  143. van Wageningen TA, Antonovaite N, Paardekam E, Breve JJP, Iannuzzi D, van Dam AM (2021) Viscoelastic properties of white and gray matter-derived microglia differentiate upon treatment with lipopolysaccharide but not upon treatment with myelin. J Neuroinflammation 18:83. https://doi.org/10.1186/s12974-021-02134-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, van Dam AM (2019) Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol Commun 7:206. https://doi.org/10.1186/s40478-019-0850-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P et al (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10:1–12

    Article  Google Scholar 

  146. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 524:3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  147. Wang F, Ren SY, Chen JF, Liu K, Li RX, Li ZF et al (2020) Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat Neurosci 23:481–486. https://doi.org/10.1038/s41593-020-0588-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM et al (2020) Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52(167–182):e167. https://doi.org/10.1016/j.immuni.2019.12.004

    Article  CAS  Google Scholar 

  149. White GE, Greaves DR (2012) Fractalkine: a survivor’s guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol 32:589–594. https://doi.org/10.1161/ATVBAHA.111.237412

    Article  CAS  PubMed  Google Scholar 

  150. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR et al (2020) Repopulating microglia promote brain repair in an il-6-dependent manner. Cell 180(833–846):e816. https://doi.org/10.1016/j.cell.2020.02.013

    Article  CAS  Google Scholar 

  151. Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J, Khorooshi R et al (2017) A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:3292–3308. https://doi.org/10.15252/embj.201696056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wlodarczyk A, Khorooshi R, Marczynska J, Holtman IR, Burton M, Jensen KN et al (2021) Type I interferon-activated microglia are critical for neuromyelitis optica pathology. Glia 69:943–953. https://doi.org/10.1002/glia.23938

    Article  CAS  PubMed  Google Scholar 

  153. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD et al (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217. https://doi.org/10.1038/nn.4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. https://doi.org/10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yin J, Valin KL, Dixon ML, Leavenworth JW (2017) The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res 2017:5150678. https://doi.org/10.1155/2017/5150678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91. https://doi.org/10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  158. Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M (2017) Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 16:4379–4392. https://doi.org/10.3892/mmr.2017.7186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of “homeostatic” microglia and patterns of their activation in active multiple sclerosis. Brain 140:1900–1913. https://doi.org/10.1093/brain/awx113

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O et al (2018) Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 28:791–805. https://doi.org/10.1111/bpa.12583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. M.S. van der Knaap, Prof. Dr. N. Wolf., and Dr. M. Bugiani for supplying tissue from ALSP and MLD for the pathology figure.

Author information

Authors and Affiliations

Authors

Contributions

S.A., N.B.M., E.G., M.M., S.K., V.E.M. and E.N. researched data for the article, and wrote the manuscript. All authors reviewed, edited and agreed on the content of the manuscript before submission.

Corresponding author

Correspondence to Erik Nutma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amor, S., McNamara, N.B., Gerrits, E. et al. White matter microglia heterogeneity in the CNS. Acta Neuropathol 143, 125–141 (2022). https://doi.org/10.1007/s00401-021-02389-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02389-x

Keywords

Navigation