Skip to main content
Log in

Elastohydrodynamic behavior analysis on water-lubricated journal bearing: a study of acoustic and tribological performance based on CFD-FSI approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Most of the studies with respect to the use of water-lubricated journal bearing are mainly concerned with tribological performance, whereas few studies explore the noise characteristics of such bearing. In this study, the tribological and acoustic behavior of water-lubricated journal bearing is studied using a rigorous program containing combined CFD and two-way FSI procedures for simulating elastohydrodynamic simulation for a range of different bearing materials. To model cavitation in the bearing, the multiphase flow mixture model is employed, while acoustical properties are investigated through broadband noise source models. The numerical results demonstrate that the bearing deformation has a great effect on the tribological characteristics of water-lubricated journal bearing, and this effect cannot be ignored, especially in the case of bearing material with a low elasticity modulus. The results also indicate that the bearing noise is weakly sensitive to the bearing material employed. Furthermore, the effect of operating conditions such as rotational speed and eccentricity ratio on the acoustic and tribological indices are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a o :

Speed of the sound (m/s)

C :

Radial clearance (mm)

d :

Displacement (mm)

e :

Eccentricity distance (mm)

h max :

Maximum film thickness (mm)

h min :

Minimum film thickness (mm)

k :

Turbulent kinetic energy (m2/s2)

L B :

Length of the bearing (mm)

O :

Center of the bearing

O j :

Center of the journal

P A :

Average acoustic power level (dB)

P bl :

Bubble pressure (Pa)

p v :

Saturation vapor pressure (Pa)

p :

Hydrodynamic pressure (Pa)

R b :

Outer radius of the bearing (mm)

R bl :

Radius of bubble (m)

R :

Inner radius of the bearing (mm)

r :

Radius of the journal (mm)

S :

Sommerfeld number ( \(S = \left( {r/C} \right)^{2} \left( {2\mu \omega rL_{B} /W} \right)\)

W :

Load-carrying capacity

\(\alpha\) :

Surface tension coefficient between the liquid and vapor (N/m)

\(\alpha_{nuc}\) :

Nucleation site volume fraction

\(\alpha_{v}\) :

Volume fraction of vapor

\(\varphi\) :

Attitude angle (o)

\(\theta\) :

Clockwise circumferential angle started from the maximum film thickness (o)

ε :

Eccentricity ratio, \(\varepsilon = e/C\)

\(\omega\) :

Shaft rotational speed (rpm)

ρ :

Density of lubricant (kg/m3)

ρ v :

Density of vapor in lubricant (kg/m3)

μ :

Dynamic viscosity of lubricant (Pa.s)

μ v :

Dynamic viscosity of vapor in lubricant (Pa.s)

µ t :

Eddy viscosity (m2/s)

ε d :

Turbulent dissipation rate (m2/s3

References

  1. Gao G, Yin Z, Jiang D, Zhang X (2014) Numerical analysis of plain journal bearing under hydrodynamic lubrication by water. Tribol Int 75:31–38. https://doi.org/10.1016/j.triboint.2014.03.009

    Article  Google Scholar 

  2. Gao G, Yin Z, Jiang D, Zhang X (2015) CFD analysis of load-carrying capacity of hydrodynamic lubrication on a water-lubricated journal bearing. Ind Lub Tribol 67(1):30–37. https://doi.org/10.1108/ilt-03-2013-0028

    Article  Google Scholar 

  3. Gao G, Yin Z, Jiang D, Zhang X, Wang Y (2016) Analysis on design parameters of water-lubricated journal bearings under hydrodynamic lubrication. Proc Ins Mech Eng Part J J Eng Tribol 230(8):1019–1029. https://doi.org/10.1177/1350650115623201

    Article  Google Scholar 

  4. Zhang H, Hua M, Dong GN, Zhang DY, Chin KS (2014) Boundary slip surface design for high speed water lubricated journal bearings. Tribol Int 79:32–41. https://doi.org/10.1016/j.triboint.2014.05.022

    Article  Google Scholar 

  5. Armentrout RW, He MH, Haykin T, Reed AE (2017) Analysis of turbulence and convective inertia in a water-lubricated tilting-pad journal bearing using conventional and CFD approaches. Tribol Trans 60(6):1129–1147. https://doi.org/10.1080/10402004.2016.1251668

    Article  Google Scholar 

  6. Feng H, Jiang S, Ji A (2019) Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol Int 130:245–260. https://doi.org/10.1016/j.triboint.2018.09.007

    Article  Google Scholar 

  7. Feng H, Jiang S, Shang-Guan Y (2021) Three-dimensional computational fluid dynamic analysis of high-speed water-lubricated hydrodynamic journal bearing with groove texture considering turbulence. Proc Ins Mech Eng Part J J Eng Tribol. https://doi.org/10.1177/1350650121998519

    Article  Google Scholar 

  8. Liu H, Xu H, Ellison PJ, Jin Z (2010) Application of computational fluid dynamics and fluid-structure interaction method to the lubrication study of a rotor-bearing system. Tribol Lett 38(3):325–336. https://doi.org/10.1007/s11249-010-9612-6

    Article  Google Scholar 

  9. Bendaoud N, Mehala K, Youcefi A, Fillon M (2012) An experimental and numerical investigation in elastohydrodynamic behaviour of a plain cylindrical journal bearing heavily loaded. Proc Ins Mech Eng Part J J Eng Tribol 226(10):809–818. https://doi.org/10.1177/1350650112451218

    Article  Google Scholar 

  10. Wodtke M, Schubert A, Fillon M, Wasilczuk M, Pajaczkowski P (2014) Large hydrodynamic thrust bearing: Comparison of the calculations and measurements. Proc Ins Mech Eng Part J J Eng Tribol 228(9):974–983. https://doi.org/10.1177/1350650114528317

    Article  Google Scholar 

  11. Wang Y, Yin Z, Jiang D, Gao G, Zhang X (2016) Study of the lubrication performance of water-lubricated journal bearings with CFD and FSI method. Ind Lubr Tribol 68(3):341–348. https://doi.org/10.1108/ILT-04-2015-0053

    Article  Google Scholar 

  12. Wang Y, Yin Z, Gao G, Zhang X (2017) Analysis of the performance of worn hydrodynamic water-lubricated plain journal bearings considering cavitation and elastic deformation. Mech Ind 18(5):503. https://doi.org/10.1051/meca/2017030

    Article  Google Scholar 

  13. Dhande DY, Pande DW (2017) A two-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation. J Braz Soc Mech Sci Eng 39:3399–3412. https://doi.org/10.1007/s40430-017-0750-8

    Article  Google Scholar 

  14. Dhande DY, Pande DW (2018) Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled fluid structure interaction considering cavitation. J King Saud Univ Eng Sci 30:345–354. https://doi.org/10.1016/j.jksues.2016.09.001

    Article  Google Scholar 

  15. Chen Y, Sun Y, He Q, Feng J (2019) Elastohydrodynamic behavior analysis of journal bearing using fluid–structure interaction considering cavitation. Arab J Sci Eng 44:1305–1320. https://doi.org/10.1007/s13369-018-3467-9

    Article  Google Scholar 

  16. Tauviqirrahman M, Ichsan BC, Jamari J, Muchammad M (2019) Influence of roughness on the behavior of three-dimensional journal bearing based on fluid-structure interaction approach. J Mech Sci Technol 33:4783–4790. https://doi.org/10.1007/s12206-019-0919-4

    Article  Google Scholar 

  17. Liang X, Yan X, Liu Z, Ouyang W (2019) Effect of perturbation amplitudes on water film stiffness coefficients of water-lubricated plain journal bearings based on CFD–FSI methods. Proc Ins Mech Eng Part J J Eng Tribol 233(7):1003–1015. https://doi.org/10.1177/1350650118818027

    Article  Google Scholar 

  18. Sun DC, Brewe DE (1990) A high speed photography study of cavitation in a dynamically loaded journal bearing. J Tribol Trans ASME 113:287–294. https://doi.org/10.1115/1.2920618

    Article  Google Scholar 

  19. Sun M, Zhang Z (1997) Experimental study of the film distribution of statically and dynamically loaded cylinder journal bearing. J Shanghai Univ (Nat Sci) 3(5):500–507

    Google Scholar 

  20. Fang C, Sun M, Wang X (2007) Experimental investigation of dynamically loaded journal bearing with panoramic view of transient oil film. Lubr Eng 32(7):54–58

    Google Scholar 

  21. Kasolang S, Ahmad MA (2012) Preliminary study of pressure profile in hydrodynamic lubrication journal bearing. Procedia Eng 41:1743–1749. https://doi.org/10.1016/j.proeng.2012.07.377

    Article  Google Scholar 

  22. Li Q, Zhang S, Wang Y, Xu WW, Wang Z (2019) Investigations of the three-dimensional temperature field of journal bearings considering conjugate heat transfer and cavitation. Ind Lubr Tribol 71(1):109–118. https://doi.org/10.1108/ILT-03-2018-0113

    Article  Google Scholar 

  23. Morris NJ, Shahmohamadi H, Rahmani R, Rahnejat H, Garner CP (2018) Combined experimental and multiphase computational fluid dynamics analysis of surface textured journal bearings in mixed regime of lubrication. Lubr Sci 30:161–173. https://doi.org/10.1002/ls.1414

    Article  Google Scholar 

  24. Rho BH, Kim KW (2003) Acoustical properties of hydrodynamic journal bearings. Tribol Int 36:61–66. https://doi.org/10.1016/S0301-679X(02)00132-9

    Article  Google Scholar 

  25. Bouaziz S, Fakhfakh T, Haddar M (2012) Acoustic analysis of hydrodynamic and elasto-hydrodynamic oil lubricated journal bearings. J Hydrodyn 24:250–256. https://doi.org/10.1016/S1001-6058(11)60241-2

    Article  Google Scholar 

  26. Meng FM, Zhang L, Liu Y, Li TT (2015) Effect of compound dimple on tribological performances of journal bearing. Tribol Int 91:99–110. https://doi.org/10.1016/j.triboint.2015.06.030

    Article  Google Scholar 

  27. Meng F, Wei Z, Minggang D, Gao G (2016) Study of acoustic performance of textured journal bearing. Proc Ins Mech Eng Part J J Eng Tribol 230(2):156–169. https://doi.org/10.1177/1350650115594406

    Article  Google Scholar 

  28. Meng FM, Zhang W (2018) Effects of compound groove texture on noise of journal bearing. J Tribol 140(3):031703. https://doi.org/10.1115/1.4038353

    Article  Google Scholar 

  29. Meng F, Yu H, Gui C, Chen L (2019) Experimental study of compound texture effect on acoustic performance for lubricated textured surfaces. Tribol Int 133:47–54. https://doi.org/10.1016/j.triboint.2018.12.036

    Article  Google Scholar 

  30. ANSYS (2017) ANSYS Fluent, version 16.0: Theory guide. ANSYS, Inc., Canonsburg, USA

  31. Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic Press, London

    MATH  Google Scholar 

  32. Lilley M (1993) The radiated noise from isotropic turbulence revisited. NASA Contract Report 93–75: NASA Langley Research Center, Hampton, VA.

  33. Sarkar S, Hussaini, MY (1993) Computation of the sound generated by isotropic turbulence. NASA Contract Report 93–74: NASA Langley Research Center, Hampton, VA

  34. Zwart P, Gerber A, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth Int. Conf. Multiph. Flow, Yokohama, Japan, May 30-June 3

  35. Cao D, He G, Pan H (2013) Comparative investigation among three cavitation models for simulating cavitating venturi. J Northwestern Polytech Univ 31:596–601

    Google Scholar 

  36. Gong J, Jin Y, Liu Z, Jiang H, Xiao M (2019) Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing. Tribol Int 129:390–397. https://doi.org/10.1016/j.triboint.2018.08.035

    Article  Google Scholar 

  37. Meng X, Khonsari MM (2018) Viscosity wedge effect of dimpled surfaces considering cavitation effect. Tribol Int 122:58–66. https://doi.org/10.1016/j.triboint.2018.02.011

    Article  Google Scholar 

  38. Liu G, Li M (2021) Experimental study on the lubrication characteristics of water-lubricated rubber bearings at high rotating speeds. Tribol Int 157:106868. https://doi.org/10.1016/j.triboint.2021.106868

    Article  Google Scholar 

Download references

Funding

This research is fully funded by University of Diponegoro through WCRU Grant, No. 118–13/UN7.6.1/PP/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tauviqirrahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauviqirrahman, M., Jamari, J., Bagir, M. et al. Elastohydrodynamic behavior analysis on water-lubricated journal bearing: a study of acoustic and tribological performance based on CFD-FSI approach. J Braz. Soc. Mech. Sci. Eng. 44, 1 (2022). https://doi.org/10.1007/s40430-021-03314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03314-9

Keywords

Navigation