Skip to main content
Log in

Numerical study on condensation heat transfer of R290 inside a 4-mm-ID horizontal smooth tube

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the condensation heat transfer characteristic of propane (R290) inside a 4-mm-inner-diameter (ID) horizontal smooth tube. Three-dimensional Computational Fluid Dynamics (CFD) simulations were performed based on the volume of fluid (VOF) multiphase flow model and shear stress transport (SST) k-ω turbulence model together with a dedicated user-defined function (UDF) compiled for the phase change model. The flow pattern and velocity field distribution were derived, and the condensation heat transfer coefficient (HTC) versus mass flux, saturation temperature, and heat transfer temperature difference were analyzed in detail. The results demonstrate that the area-weighted average condensation HTC of the wall takes on an average increase rate of 33.69% as the mass flux increases from 180 to 360 kg/(m2 s), and an average decrease rate of 19.83% with the increasing saturation temperature. Besides, the local condensation HTC swells more than twice as the temperature difference increases from 5 to 20 K. Compared with the saturation temperature, the mass flux and heat transfer temperature difference have a more remarkable effect on the condensation flow pattern and velocity field distribution. Under the specific conditions, the flow condensation of R290 inside the tube can be successively transformed from annular flow, annular wavy flow, half annular flow to plug flow, and the annular flow region can be enlarged with increasing mass flux. Comparing the simulated results with those of the experiment, it can be concluded that the numerical model adopted in this paper has good accuracy and the relative deviation is within ± 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D h :

Hydraulic diameter (m)

D ω :

Orthogonal divergence term

d :

Inner diameter of the tube (m)

E :

Specific thermodynamic energy (kJ/kg)

F σ :

Volumetric force at the interface (N/m3)

G :

Mass flux (kg/(m2 s))

G k :

Generation of turbulence kinetic energy in the SST k-ω model

G ω :

Turbulence kinetic energy generated by the ω equation

h lv :

Latent heat of vaporization (kJ/kg)

k :

Turbulence kinetic energy

L :

The effective length of the tube (m)

Nu :

Nusselt number

P :

Pressure (Pa)

Q :

Energy source term (kJ/(m3 s))

r :

Empirical coefficient (s−1)

S :

Mass source term (kg/(m3 s))

T :

Temperature (K)

ΔT :

Heat transfer temperature difference (K)

u :

Velocity of the vapor–liquid mixture (m/s)

x :

Vapor quality

Y k :

Turbulent dissipation term of the k equation

Y ω :

Turbulent dissipation term of the ω equation

α :

Volume fraction

ρ :

Density (kg/m3)

σ :

Surface tension coefficient (N/m)

λ :

Thermal conductivity (W/(m K))

μ :

Dynamic viscosity (Pa s)

κ :

Surface curvature (m−1)

\(\Gamma_k\) :

Effective diffusion terms of k

\(\Gamma_\omega\) :

Effective diffusion terms of ω

v :

Vapor phase

l :

Liquid phase

exp:

Experiment

sim:

Simulation

sat:

Saturation

HTC:

Heat transfer coefficient

ID:

Inner diameter

UDF:

User-defined function

References

  1. Polonara F, Kuijpers L, Peixoto R (2017) Potential impacts of the Montreal Protocol Kigali Amendment to the choice of refrigerant alternatives. Int J Heat Tech 35(Special Issue1):S1–S8. https://doi.org/10.18280/ijht.35Sp0101

  2. Sham SV, Ashok B (2017) Theoretical performance investigation of vapor compression refrigeration system using HFC and HC refrigerant mixtures as alternatives to replace R22. Energ Proced 109:235–242. https://doi.org/10.1016/j.egypro.2017.03.053

    Article  Google Scholar 

  3. Shi L, Zhu MS (2010) Re-analysis on using R32 to substitute for R22 in household/commercial air-conditioning. J Refrig 31(1):5–9 (in Chinese). https://doi.org/10.3969/j.issn.0253-4339.2010.01.001

    Article  Google Scholar 

  4. Karagoz S, Yilmaz M, Comakli O, Ozyurt O (2004) R134a and various mixtures of R22/R134a as an alternative to R22 in vapor compression heat pumps. Energy Convers Manage 45(2):181–196. https://doi.org/10.1016/S0196-8904(03)00144-4

    Article  Google Scholar 

  5. Zhang Y, Liu CC, Chen XN, Li DW, Shi JR, Chen JP (2019) Performance study and optimization on alternative refrigerant R290 in R22 low temperature heat pump system. J Refrig 40(3):72–78 (in Chinese). https://doi.org/10.3969/j.issn.0253-4339.2019.03.072

    Article  Google Scholar 

  6. Liu N, Xiao H, Li JM (2016) Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl Therm Eng 102:63–72. https://doi.org/10.1016/j.applthermaleng.2016.03.073

    Article  Google Scholar 

  7. Lee HS, Son CH (2010) Condensation heat transfer and pressure drop characteristics of R-290, R-600a, R-134a and R-22 in horizontal tubes. Heat Mass Transf 46(5):571–584. https://doi.org/10.1007/s00231-010-0603-9

    Article  Google Scholar 

  8. Wang X, Shi L, Zhu MS (2002) Current status and research subjects of safety evaluation of refrigerant alternatives. Heat Vent Air Cond 32(2):38–42 (in Chinese) . https://doi.org/10.3969/j.issn.1002-8501.2002.02.012

    Article  Google Scholar 

  9. Ghoubali R, Byrne P, Bazantay F (2017) Refrigerant charge optimisation for propane heat pump water heaters. Int J Refrig 76:233–244. https://doi.org/10.1016/j.ijrefrig.2017.02.017

    Article  Google Scholar 

  10. Ning JH, Liu SC, Ye QY (2013) Investigations on microscale characteristics of R290 vapor dropwise condensation heat transfer. Fluid Mech 41(11):56–60+36 (in Chinese). https://doi.org/10.3969/j.issn.1005-0329.2013.11.012

  11. Macdonald M, Garimella S (2017) Effect of temperature difference on in-tube condensation heat transfer coefficients. J Heat Trans-T ASME 139:1–9. https://doi.org/10.1115/1.4034495

    Article  Google Scholar 

  12. Zou SK (2017) Experimental study on condensation heat transfer of R290 in small diameter horizontal tube. Dissertation, Nanchang University.

  13. Del Col D, Bortolato M, Bortolin S (2014) Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel. Int J Refrig 47:66–84. https://doi.org/10.1016/j.ijrefrig.2014.08.002

    Article  Google Scholar 

  14. Xiao H (2015) Experimental study on the condensation heat transfer of R290 and R1234ze(E) in horizontal minichannels. Dissertation, Tsinghua University.

  15. Wen J, Gu X, Wang SM, Li YZ, Tu JY (2018) The comparison of condensation heat transfer and frictional pressure drop of R1234ze(E), propane and R134a in a horizontal mini-channel. Int J Refrig 92:208–224. https://doi.org/10.1016/j.ijrefrig.2018.03.006

    Article  Google Scholar 

  16. Ning JH, Liu SC, Li HY (2012) Simulation on condensation heat transfer characteristic of natural refrigerant R290 inside tube. CIESC J (in Chinese) 63(4):1038–1043 (in Chinese). https://doi.org/10.3969/j.issn.0438-1157.2012.04.007

    Article  Google Scholar 

  17. Li SL, Cai WH, Chen J, Zhang HC, Jiang YQ (2018) Numerical study on the flow and heat transfer characteristics of forced convective condensation with propane in a spiral pipe. Int J Heat Mass Tran 117:1169–1187. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.080

    Article  Google Scholar 

  18. Qiu GD, Cai WH, Wu ZY, Yao Y, Jiang YQ (2015) Numerical simulation of forced convective condensation of propane in a spiral tube. J Heat Trans-T ASME 137:1–9. https://doi.org/10.1115/1.4029475

    Article  Google Scholar 

  19. Qiu GD, Li MH, Cai WH (2020) The effect of inclined angle on flow, heat transfer and refrigerant charge of R290 condensation in a minichannel. Int J Heat Mass Tran 154:1–10. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119652

    Article  Google Scholar 

  20. Qiu GD, Li MH, Cai WH (2020) The condensation heat transfer, frictional pressure drop and refrigerant charge characteristics of R290 in minichannels with different diameters. Int J Heat Mass Tran 158:1–14. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119652

    Article  Google Scholar 

  21. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  22. Liu ZY, Sunden B, Yuan JL (2012) VOF modeling and analysis of filmwise condensation between vertical parallel plates. Heat Transfer Res 43(1):47–68. https://doi.org/10.1615/HeatTransRes.2012004376

    Article  Google Scholar 

  23. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee WH (1980) A pressure iteration scheme for two-phase flow modeling. 407–431. https://doi.org/10.1142/9789814460286_0004

  25. Lee HS, Kharangate CR, Mascarenhas N, Park I, Mudawar I (2015) Experimental and computational investigation of vertical downflow condensation. Int J Heat Mass Tran 85:865–879. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.037

    Article  Google Scholar 

  26. Da Riva E, Del Col D (2012) Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel. J Heat Trans-T ASME 134:1–8. https://doi.org/10.1115/1.4005710

    Article  Google Scholar 

  27. Liu N, Li JM (2014) Numerical simulation of R32 condensation heat transfer in horizontal circular microchannel. CIESC J (in Chinese) 65(11):4246–4253 (in Chinese). https://doi.org/10.3969/j.issn.0438-1157.2014.11.005

    Article  Google Scholar 

  28. Bortolin S, Da Riva E, Del Col D (2013) Condensation in a square minichannel: application of the VOF method. Heat Transf Eng 35(2):193–203. https://doi.org/10.1080/01457632.2013.812493

    Article  Google Scholar 

  29. Zhang JZ, Li W, Sherif SA (2016) A numerical study of condensation heat transfer and pressure drop in horizontal round and flattened minichannels. Int J Therm Sci 106:80–93. https://doi.org/10.1016/j.ijthermalsci.2016.02.019

    Article  Google Scholar 

  30. Zhang JZ, Li W (2016) Numerical simulation of condensation in horizontal circular and square minichannels using R134a. CIESC J 67(5):1748–1754 (in Chinese). https://doi.org/10.11949/j.issn.0438-1157.20151306

  31. Da Riva E, Del Col D, Garimella SV, Cavallini A (2012) The importance of turbulence during condensation in a horizontal circular minichannel. Int J Heat Mass Tran 55:3470–3481. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.026

    Article  Google Scholar 

  32. Berndt JC, Peric R, Abdel-Maksoud M (2021) Improved simulation of flows with free-surface waves by optimizing the angle factor in the HRIC interface-sharpening scheme. J Appl Fluid Mech 14(3):909–920. https://doi.org/10.47176/jafm.14.03.32062

  33. Dai YD, Guo YJ, Zou SK, He GG (2020) Experiment on condensation heat transfer characteristics of R290 flowing in horizontal small tube. Acta Energi Sin 41(8):251–257 (in Chinese).

    Google Scholar 

  34. Hajal JE, Thome JR, Cavallini A (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int J Heat Mass Tran 46(18):3349–3363. https://doi.org/10.1016/S0017-9310(03)00139-X

    Article  MATH  Google Scholar 

  35. Wang LL, Dang C, Hihara E (2012) Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO1234yf in a horizontal tube. Int J Refrig 35(5):1418–1429. https://doi.org/10.1016/j.ijrefrig.2012.04.006

    Article  Google Scholar 

  36. Hossain MA, Onaka Y, Miyara A (2012) Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A. Int J Refrig 35(4):927–938. https://doi.org/10.1016/j.ijrefrig.2012.01.002

    Article  Google Scholar 

  37. Ning JH, Liu SC, Ye QY (2013) Analysis on heat transfer characteristic of dropwise condensation of natural refrigerant R290 and R22. CIESC J 64(8):2827–2832 (in Chinese). https://doi.org/10.3969/j.issn.0438-1157.2013.08.018

    Article  Google Scholar 

  38. Agarwal R, Hrnjak P (2015) Condensation in two phase and desuperheating zone for R1234ze(E), R134a and R32 in horizontal smooth tubes. Int J Refrig 50:172–183. https://doi.org/10.1016/j.ijrefrig.2014.10.015

    Article  Google Scholar 

  39. Dobson MK, Chato JC (1998) Condensation in smooth horizontal tubes. J Heat Trans-T ASME 120(1):193–213. https://doi.org/10.1115/1.2830043

    Article  Google Scholar 

  40. Soliman HM (1986) The mist-annular transition during condensation and its influence on the heat transfer mechanism. Int J Multiphas Flow 12(2):277–288. https://doi.org/10.1016/0301-9322(86)90030-3

    Article  MATH  Google Scholar 

  41. Cavallini A, Censi G, Del Col D, Doretti L, Longo GA, Rossetto L (2001) Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J Refrig 24(1):73–87. https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  42. Del Col D, Torresin D, Cavallini A (2010) Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf. Int J Refrig 33(7):1307–1318. https://doi.org/10.1016/j.ijrefrig.2010.07.020

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.22068024) and Natural Science Foundation of Jiangxi Province, China (Grant No.2016BAB206124)

Funding

National Natural Science Foundation of China, 22068024, Yuande Dai, Natural Science Foundation of Jiangxi Province, 2016BAB206124, Yuande Dai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuande Dai.

Additional information

Technical Editor: Luben Cabezas-Gómez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zhu, S., Guo, Y. et al. Numerical study on condensation heat transfer of R290 inside a 4-mm-ID horizontal smooth tube. J Braz. Soc. Mech. Sci. Eng. 44, 2 (2022). https://doi.org/10.1007/s40430-021-03313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03313-w

Keywords

Navigation