Skip to main content
Log in

Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements Using Patient-Specific Computational Modeling

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients — using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes.

Graphical abstract

Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAV:

Bicuspid aortic valve

CFD:

Computational fluid dynamics

FE :

Finite element

LCL:

Left coronary leaflet

LVOT:

Left ventricular outflow tract

NCL:

Non-coronary leaflet

PPI:

Permanent pacemaker Implantation

PVL:

Paravalvular leak

RCL:

Right coronary leaflet

SAVR:

Surgical aortic valve replacement

TAVR:

Transcatheter aortic valve replacement

References

  1. Braverman, A. C., et al. (2005). The bicuspid aortic valve. Curr Problems in Cardiology, 30, 470–522. https://doi.org/10.1016/j.cpcardiol.2005.06.002

    Article  Google Scholar 

  2. Losenno, K. L., Goodman, R. L., & Chu, M. W. A. (2012). Bicuspid aortic valve disease and ascending aortic aneurysms: Gaps in knowledge. Cardiology Research and Practice, 2012, 145202. https://doi.org/10.1155/2012/145202

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ward, C. (2000). Clinical significance of the bicuspid aortic valve. Heart, 83, 81. https://doi.org/10.1136/heart.83.1.81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pibarot, P., & Clavel, M.-A. (2017). Outcome of aortic valve replacement in aortic stenosis: The number of valve cusps matters. European Heart Journal - Cardiovascular Imaging, 19, 9–11. https://doi.org/10.1093/ehjci/jex258

    Article  Google Scholar 

  5. Depboylu, B. C., Yazman, S., & Harmandar, B. (2018). Complications of transcatheter aortic valve replacement and rescue attempts. Vessel Plus, 2, 26. https://doi.org/10.20517/2574-1209.2018.39

    Article  Google Scholar 

  6. Braghiroli, J., Kapoor, K., Thielhelm, T. P., Ferreira, T., & Cohen, M. G. (2020). Transcatheter aortic valve replacement in low risk patients: a review of PARTNER 3 and Evolut low risk trials. Cardiovascular diagnosis and therapy, 10, 59–71. https://doi.org/10.21037/cdt.2019.09.12

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Riordon, M. (2020). Positive early data for TAVR in low-risk patients with bicuspid valves. https://www.tctmd.com/news/positive-early-data-tavr-low-risk-patients-bicuspid-valves

  8. Spears, J., Al-Saiegh, Y., Goldberg, D., Manthey, S., & Goldberg, S. (2020). TAVR: A review of current practices and considerations in low-risk patients. Journal of Interventional Cardiology, 2020, 2582938. https://doi.org/10.1155/2020/2582938

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vincent, F., et al. (2021). Transcatheter aortic valve replacement in bicuspid aortic valve stenosis. Circulation, 143, 1043–1061. https://doi.org/10.1161/CIRCULATIONAHA.120.048048

    Article  PubMed  CAS  Google Scholar 

  10. Yoon, S.-H., Makkar, R. R. (2018) TAVR for severe bicuspid aortic valve stenosis. American College of Cardiology. https://www.acc.org/latest-in-cardiology/articles/2018/01/19/08/14/tavr-for-severe-bicuspid-aortic-valve-stenosis

  11. Conte, S. M., et al. (2019). Plugging paravalvular leak in transcatheter aortic valves. JACC: Case Reports, 1(696), 702. https://doi.org/10.1016/j.jaccas.2019.10.013

    Article  Google Scholar 

  12. Halim, S. A., et al. (2020). Outcomes of transcatheter aortic valve replacement in patients with bicuspid aortic valve disease. Circulation, 141, 1071–1079. https://doi.org/10.1161/CIRCULATIONAHA.119.040333

    Article  PubMed  Google Scholar 

  13. Mauri, V., et al. (2020). Impact of device landing zone calcification patterns on paravalvular regurgitation after transcatheter aortic valve replacement with different next-generation devices. Open Heart, 7, e001164. https://doi.org/10.1136/openhrt-2019-001164

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jimenez Diaz, V. A., et al. (2019). Assessment of platelet REACtivity after transcatheter aortic valve replacement: The REAC-TAVI trial. JACC Cardiovascular Interventions, 12(22), 32. https://doi.org/10.1016/j.jcin.2018.10.005

    Article  Google Scholar 

  15. Bianchi, M., et al. (2019). Patient-specific simulation of transcatheter aortic valve replacement: Impact of deployment options on paravalvular leakage. Biomechanics and Modeling in Mechanobiology, 18, 435–451. https://doi.org/10.1007/s10237-018-1094-8

    Article  PubMed  Google Scholar 

  16. Huded, C. P., et al. (2019). Association between transcatheter aortic valve replacement and early postprocedural stroke. JAMA, 321, 2306–2315. https://doi.org/10.1001/jama.2019.7525

    Article  PubMed  PubMed Central  Google Scholar 

  17. Makkar, R. R., et al. (2019). Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke. JAMA, 321, 2193–2202. https://doi.org/10.1001/jama.2019.7108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mao, W., Wang, Q., Kodali, S., & Sun, W. (2018). Numerical parametric study of paravalvular leak following a transcatheter aortic valve deployment into a patient-specific aortic root. Journal of Biomechanical Engineering, 140, 1010071–10100711. https://doi.org/10.1115/1.4040457

    Article  PubMed Central  Google Scholar 

  19. Qin, T., et al. (2020). The role of stress concentration in calcified bicuspid aortic valve. Journal of The Royal Society Interface, 17, 20190893. https://doi.org/10.1098/rsif.2019.0893

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Jaegere, P., et al. (2016). Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovascular Interventions, 9(508), 512. https://doi.org/10.1016/j.jcin.2016.01.003

    Article  Google Scholar 

  21. Wang, Q., Kodali, S., Primiano, C., & Sun, W. (2015). Simulations of transcatheter aortic valve implantation: Implications for aortic root rupture. Biomechanics and modeling in mechanobiology, 14, 29–38. https://doi.org/10.1007/s10237-014-0583-7

    Article  PubMed  Google Scholar 

  22. Bosi, G. M., et al. (2020). A validated computational framework to predict outcomes in TAVI. Scientific Reports, 10, 9906. https://doi.org/10.1038/s41598-020-66899-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lavon, K., et al. (2019). Biomechanical modeling of transcatheter aortic valve replacement in a stenotic bicuspid aortic valve: Deployments and paravalvular leakage. Medical & biological engineering & computing, 57, 2129–2143. https://doi.org/10.1007/s11517-019-02012-y

    Article  Google Scholar 

  24. Pasta, S., et al. (2020). Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve. Medical & Biological Engineering & Computing, 58, 815–829. https://doi.org/10.1007/s11517-020-02138-4

    Article  Google Scholar 

  25. Dowling, C., Firoozi, S., & Brecker, S. J. (2020). First-in-human experience with patient-specific computer simulation of TAVR in bicuspid aortic valve morphology. JACC: Cardiovascular Interventions, 13, 184–192. https://doi.org/10.1016/j.jcin.2019.07.032

    Article  PubMed  Google Scholar 

  26. Bianchi, M., et al. (2016). Effect of balloon-expandable transcatheter aortic valve replacement positioning: A patient-specific numerical model. Artificial Organs, 40, E292-e304. https://doi.org/10.1111/aor.12806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Martin, C., & Sun, W. (2012). Biomechanical characterization of aortic valve tissue in humans and common animal models. Journal of Biomedical Materials Research Part A, 100A, 1591–1599. https://doi.org/10.1002/jbm.a.34099

    Article  CAS  Google Scholar 

  28. Emendi, M., et al. (2021). Patient-specific bicuspid aortic valve biomechanics: A magnetic resonance imaging integrated fluid–structure interaction approach. Annals of Biomedical Engineering, 49, 627–641. https://doi.org/10.1007/s10439-020-02571-4

    Article  PubMed  Google Scholar 

  29. Xenos, M., et al. (2010). Device thrombogenicity emulator (DTE) — Design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. Journal of Biomechanics, 43, 2400–2409.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Girdhar, G., et al. (2012). Device thrombogenicity emulation: A novel method for optimizing mechanical circulatory support device thromboresistance. PLoS One, 7, e32463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chiu, W. C., et al. (2014). Thromboresistance comparison of the heartmate II ventricular assist device with the device thrombogenicity emulation-optimized heartassist 5 VAD. Journal of Biomechanical Engineering, 136, 021014. https://doi.org/10.1115/1.4026254

    Article  PubMed  Google Scholar 

  32. Pibarot, P., Hahn Rebecca, T., Weissman Neil, J., & Monaghan Mark, J. (2015). Assessment of paravalvular regurgitation following TAVR. JACC: Cardiovascular Imaging, 8, 340–360. https://doi.org/10.1016/j.jcmg.2015.01.008

    Article  PubMed  Google Scholar 

  33. Forrest, J. K., et al. (2020). Transcatheter aortic valve replacement in bicuspid versus tricuspid aortic valves from the STS/ACC TVT Registry. JACC Cardiovascular Interventions, 13, 1749–1759. https://doi.org/10.1016/j.jcin.2020.03.022

    Article  PubMed  Google Scholar 

  34. Mas-Peiro, S., Fichtlscherer, S., Walther, C., & Vasa-Nicotera, M. (2020). Current issues in transcatheter aortic valve replacement. Journal of thoracic disease, 12, 1665–1680. https://doi.org/10.21037/jtd.2020.01.10

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jones, B. M., et al. (2016). Prognostic significance of mild aortic regurgitation in predicting mortality after transcatheter aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery, 152, 783–790. https://doi.org/10.1016/j.jtcvs.2016.05.023

    Article  PubMed  Google Scholar 

  36. Mack, M. J., et al. (2015). 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet, 385, 2477–2484. https://doi.org/10.1016/s0140-6736(15)60308-7

    Article  PubMed  Google Scholar 

  37. Yoon, S.-H., et al. (2020). Bicuspid aortic valve morphology and outcomes after transcatheter aortic valve replacement. Journal of the American College of Cardiology, 76, 1018–1030. https://doi.org/10.1016/j.jacc.2020.07.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like thank SeaWulf Cluster at Stony Brook University for providing computational resources and Simulia Living Heart Project and Ansys for academic collaborations and providing Abaqus and Ansys software.

Funding

This project was supported by National Institutes of Health-National Institute of Biomedical Imaging and Bioengineering U01EB026414-01 (DB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Bluestein.

Ethics declarations

Ethical Approval and Informed Consent

All procedures involving human participants followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national research) and with the Helsinki Declaration of 1975, as revised in 2000. A waiver of consent was approved by the Stony Brook Committee on Research in Human Subjects (CORIHS-2013–2357-F) and Rabin Medical Center Helsinki Committee (0636–16-RMC) for retrospective collection of de-identified patient images. No animal studies were carried out by the authors for this article.

Conflict of Interest

Author DB has an equity interest in Polynova Cardiovascular Inc. Author BK is a consultant of Polynova Cardiovascular Inc. All the other authors declare no conflict of interest.

IRB Approval

2013–2357-R5, 2/10/2021

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anam, S.B., Kovarovic, B.J., Ghosh, R.P. et al. Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements Using Patient-Specific Computational Modeling. J. of Cardiovasc. Trans. Res. 15, 834–844 (2022). https://doi.org/10.1007/s12265-021-10191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10191-z

Keywords

Navigation