Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Ameliorating Alzheimer’s-like Pathology by Minocycline via Inhibiting Cdk5/p25 Signaling

Author(s): Yu Zhao*, Chuanling Wang, Wenbo He and Zhiyou Cai*

Volume 20, Issue 9, 2022

Published on: 31 March, 2022

Page: [1783 - 1792] Pages: 10

DOI: 10.2174/1570159X19666211202124925

Price: $65

Abstract

Background: Minocycline has multiple neuroprotective roles in abundant brain diseases, including the prevention and treatment of Alzheimer’s disease (AD). Cdk5/p25 signaling plays an important role in the onset and development of Alzheimer’s-like pathology. The aim of the present work was to further explore the underlying mechanism which minocycline effects on Cdk5/p25 signaling related to Alzheimer’s-like pathology.

Methods: The cognitive function of animals was measured by the Morris water maze test. The levels of Aβ were determined by an enzyme-linked immunosorbent assay. The levels of APP, β- and γ- secretases, and the biomarkers of tau (total tau and hyperphosphorylated tau), inflammatory cytokine and matrix metalloproteinases (MMP-2 and MMP-9), and biomarkers of synapse and Cdk5/p25 signaling, were detected by the Western blotting. The biomarkers of the synapse, inflammatory cytokine, and matrix metalloproteinases (MMP-2 and MMP-9) were also determined by immunofluorescence.

Results: Minocycline improved learning and memory in APP/PS1 mice. It limited the production of Aβ and hyperphosphorylation of tau in the hippocampus and ameliorated synaptic deficit. Moreover, it also inhibited the activation of Cdk5/p25 signaling, inflammation, and matrix metalloproteinases.

Conclusion: Minocycline mitigates Alzheimer’s-like pathology via limiting the activation of Cdk5/p25 signaling pathway and improves cognitive deficits

Keywords: Minocycline, Alzheimer’s disease, pathology, synapse, cyclin-dependent kinase 5, anti-inflammatory drugs.

Graphical Abstract
[1]
Daulatzai, M.A. Pharmacotherpy and Alzheimer’s disease: The M-Drugs (Melatonin, Minocycline, Modafinil, and Memantine) approach. Curr. Pharm. Des., 2016, 22(16), 2411-2430.
[http://dx.doi.org/10.2174/1381612822666160203142111] [PMID: 26845126]
[2]
Chase, T.N.; Farlow, M.R.; Clarence-Smith, K. Donepezil plus solifenacin (CPC-201) treatment for Alzheimer’s disease. Neurotherapeutics, 2017, 14(2), 405-416.
[http://dx.doi.org/10.1007/s13311-016-0511-x] [PMID: 28138837]
[3]
Han, S.H.; Lee, J.H.; Kim, S.Y.; Park, K.W.; Chen, C.; Tripathi, M.; Dash, A.; Kubota, N. Donepezil 23 mg in Asian patients with moderate-to-severe Alzheimer’s disease. Acta Neurol. Scand., 2017, 135(2), 252-256.
[http://dx.doi.org/10.1111/ane.12571] [PMID: 26923256]
[4]
Blautzik, J.; Keeser, D.; Paolini, M.; Kirsch, V.; Berman, A.; Coates, U.; Reiser, M.; Teipel, S.J.; Meindl, T. Functional connectivity increase in the default-mode network of patients with Alzheimer’s disease after long-term treatment with Galantamine. Eur. Neuropsychopharmacol., 2016, 26(3), 602-613.
[http://dx.doi.org/10.1016/j.euroneuro.2015.12.006] [PMID: 26796681]
[5]
Mancuso, C.; Siciliano, R.; Barone, E.; Butterfield, D.A.; Preziosi, P. Pharmacologists and Alzheimer disease therapy: To boldly go where no scientist has gone before. Expert Opin. Investig. Drugs, 2011, 20(9), 1243-1261.
[http://dx.doi.org/10.1517/13543784.2011.601740] [PMID: 21810032]
[6]
Ehret, M.J.; Chamberlin, K.W. Current practices in the treatment of Alzheimer disease: Where is the evidence after the phase iii trials? Clin. Ther., 2015, 37(8), 1604-1616.
[http://dx.doi.org/10.1016/j.clinthera.2015.05.510] [PMID: 26122885]
[7]
Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin. Investig. Drugs, 2017, 26(6), 735-739.
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[8]
Azizi, G.; Khannazer, N.; Mirshafiey, A. The potential role of chemokines in Alzheimer’s disease pathogenesis. Am. J. Alzheimers Dis. Other Demen., 2014, 29(5), 415-425.
[http://dx.doi.org/10.1177/1533317513518651] [PMID: 24408754]
[9]
Padurariu, M.; Ciobica, A.; Hritcu, L.; Stoica, B.; Bild, W.; Stefanescu, C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett., 2010, 469(1), 6-10.
[http://dx.doi.org/10.1016/j.neulet.2009.11.033] [PMID: 19914330]
[10]
Azizi, G.; Navabi, S.S.; Al-Shukaili, A.; Seyedzadeh, M.H.; Yazdani, R.; Mirshafiey, A. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos Univ. Med. J., 2015, 15(3), e305-e316.
[http://dx.doi.org/10.18295/squmj.2015.15.03.002] [PMID: 26357550]
[11]
Khan, A.; Park, T.J.; Ikram, M.; Ahmad, S.; Ahmad, R.; Jo, M.G.; Kim, M.O. Antioxidative and Anti-inflammatory effects of kojic acid in Aβ-induced mouse model of Alzheimer’s disease. Mol. Neurobiol., 2021, 58(10), 5127-5140.
[http://dx.doi.org/10.1007/s12035-021-02460-4] [PMID: 34255249]
[12]
Di Stefano, A.; Sozio, P.; Iannitelli, A.; Cerasa, L.S.; Fontana, A.; Di Biase, G.; D’Amico, G.; Di Giulio, M.; Carpentiero, C.; Grumetto, L.; Barbato, F. Characterization of alkanoyl-10-O-minocyclines in micellar dispersions as potential agents for treatment of human neurodegenerative disorders. Eur. J. Pharm. Sci., 2008, 34(2-3), 118-128.
[http://dx.doi.org/10.1016/j.ejps.2008.02.123] [PMID: 18420389]
[13]
Hahn, J.N.; Kaushik, D.K.; Mishra, M.K.; Wang, J.; Silva, C.; Yong, V.W. Impact of minocycline on extracellular matrix metalloproteinase inducer, a factor implicated in multiple sclerosis immunopathogenesis. J. Immunol., 2016, 197(10), 3850-3860.
[http://dx.doi.org/10.4049/jimmunol.1600436] [PMID: 27733550]
[14]
Soliman, S.; Ishrat, T.; Fouda, A.Y.; Patel, A.; Pillai, B.; Fagan, S.C. Sequential therapy with minocycline and candesartan improves long-term recovery after experimental stroke. Transl. Stroke Res., 2015, 6(4), 309-322.
[http://dx.doi.org/10.1007/s12975-015-0408-8] [PMID: 26004281]
[15]
Cai, Z.Y.; Yan, Y.; Chen, R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci. Bull., 2010, 26(1), 28-36.
[http://dx.doi.org/10.1007/s12264-010-0818-2] [PMID: 20101270]
[16]
Henry, C.J.; Huang, Y.; Wynne, A.; Hanke, M.; Himler, J.; Bailey, M.T.; Sheridan, J.F.; Godbout, J.P. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflammation, 2008, 5, 15.
[http://dx.doi.org/10.1186/1742-2094-5-15] [PMID: 18477398]
[17]
Yang, Y.; Salayandia, V.M.; Thompson, J.F.; Yang, L.Y.; Estrada, E.Y.; Yang, Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflammation, 2015, 12, 26.
[http://dx.doi.org/10.1186/s12974-015-0245-4] [PMID: 25889169]
[18]
Klaas, J.P.; Matzke, T.; Makol, A.; Fulgham, J.R. Minocycline-induced polyarteritis nodosa-like vasculitis presenting as brainstem stroke. J. Clin. Neurosci., 2015, 22(5), 904-907.
[http://dx.doi.org/10.1016/j.jocn.2014.12.003] [PMID: 25778384]
[19]
Kohler, E.; Prentice, D.A.; Bates, T.R.; Hankey, G.J.; Claxton, A.; van Heerden, J.; Blacker, D. Intravenous minocycline in acute stroke: A randomized, controlled pilot study and meta-analysis. Stroke, 2013, 44(9), 2493-2499.
[http://dx.doi.org/10.1161/STROKEAHA.113.000780] [PMID: 23868273]
[20]
Sørensen, P.S.; Sellebjerg, F.; Lycke, J.; Färkkilä, M.; Créange, A.; Lund, C.G.; Schluep, M.; Frederiksen, J.L.; Stenager, E.; Pfleger, C.; Garde, E.; Kinnunen, E.; Marhardt, K. Minocycline added to subcutaneous interferon β-1a in multiple sclerosis: Randomized RECYCLINE study. Eur. J. Neurol., 2016, 23(5), 861-870.
[http://dx.doi.org/10.1111/ene.12953] [PMID: 26848561]
[21]
Choi, Y.; Kim, H.S.; Shin, K.Y.; Kim, E.M.; Kim, M.; Kim, H.S.; Park, C.H.; Jeong, Y.H.; Yoo, J.; Lee, J.P.; Chang, K.A.; Kim, S.; Suh, Y.H. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology, 2007, 32(11), 2393-2404.
[http://dx.doi.org/10.1038/sj.npp.1301377] [PMID: 17406652]
[22]
Mushtaq, G.; Greig, N.H.; Anwar, F.; Al-Abbasi, F.A.; Zamzami, M.A.; Al-Talhi, H.A.; Kamal, M.A. Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr. Pharm. Des., 2016, 22(5), 527-534.
[http://dx.doi.org/10.2174/1381612822666151124235028] [PMID: 26601962]
[23]
Kwon, K.J.; Park, J.H.; Jo, I.; Song, K.H.; Han, J.S.; Park, S.H.; Han, S.H.; Cho, D.H. Disruption of neuronal nitric oxide synthase dimerization contributes to the development of Alzheimer’s disease: Involvement of cyclin-dependent kinase 5-mediated phosphorylation of neuronal nitric oxide synthase at Ser(293). Neurochem. Int., 2016, 99, 52-61.
[http://dx.doi.org/10.1016/j.neuint.2016.06.005] [PMID: 27296112]
[24]
Malhotra, N.; Gupta, R.; Kumar, P. Pharmacological relevance of CDK inhibitors in Alzheimer’s disease. Neurochem. Int., 2021, 148, 105115.
[http://dx.doi.org/10.1016/j.neuint.2021.105115] [PMID: 34182065]
[25]
Huang, Y.; Huang, W.; Huang, Y.; Song, P.; Zhang, M.; Zhang, H.T.; Pan, S.; Hu, Y. Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 transgenic mice. J. Alzheimers Dis., 2020, 74(4), 1231-1242.
[http://dx.doi.org/10.3233/JAD-191098] [PMID: 32144987]
[26]
Rosell-Cardona, C.; Griñan-Ferré, C.; Pérez-Bosque, A.; Polo, J.; Pallàs, M.; Amat, C.; Moretó, M.; Miró, L. Dietary spray-dried porcine plasma reduces neuropathological Alzheimer’s disease Hallmarks in SAMP8 mice. Nutrients, 2021, 13(7), 2369.
[http://dx.doi.org/10.3390/nu13072369] [PMID: 34371878]
[27]
Chen, S.D.; Yang, J.L.; Lin, Y.C.; Chao, A.C.; Yang, D.I. Emerging roles of inhibitor of differentiation-1 in Alzheimer’s disease: cell cycle reentry and beyond. Cells, 2020, 9(7), E1746.
[http://dx.doi.org/10.3390/cells9071746] [PMID: 32708313]
[28]
Kohman, R.A.; Bhattacharya, T.K.; Kilby, C.; Bucko, P.; Rhodes, J.S. Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav. Brain Res., 2013, 242, 17-24.
[http://dx.doi.org/10.1016/j.bbr.2012.12.032] [PMID: 23274840]
[29]
Siopi, E.; Calabria, S.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice. J. Neurotrauma, 2012, 29(2), 354-361.
[http://dx.doi.org/10.1089/neu.2011.2055] [PMID: 21910642]
[30]
Meng, F.; Wang, J.; Ding, F.; Xie, Y.; Zhang, Y.; Zhu, J. Neuroprotective effect of matrine on MPTP-induced Parkinson’s disease and on Nrf2 expression. Oncol. Lett., 2017, 13(1), 296-300.
[http://dx.doi.org/10.3892/ol.2016.5383] [PMID: 28123558]
[31]
Cai, Z.; Yan, Y.; Wang, Y. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin. Interv. Aging, 2013, 8, 1089-1095.
[http://dx.doi.org/10.2147/CIA.S46536] [PMID: 23983461]
[32]
Sarantseva, S.V.; Bol’shakova, O.I.; Timoshenko, S.I.; Rodin, D.I.; Vitek, M.P.; Shvartsman, A.L. Studying pathogenesis of Alzheimer’s disease in a Drosophila melanogaster model: Human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin. Genetika, 2009, 45(1), 119-126.
[PMID: 19239106]
[33]
Ferretti, M.T.; Allard, S.; Partridge, V.; Ducatenzeiler, A.; Cuello, A.C. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J. Neuroinflammation, 2012, 9, 62.
[http://dx.doi.org/10.1186/1742-2094-9-62] [PMID: 22472085]
[34]
Chen, S.D.; Yin, J.H.; Hwang, C.S.; Tang, C.M.; Yang, D.I. Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: Implication in Alzheimer’s disease and cerebral ischemia. Free Radic. Res., 2012, 46(8), 940-950.
[http://dx.doi.org/10.3109/10715762.2012.674640] [PMID: 22583533]
[35]
Gwon, A.R.; Park, J.S.; Arumugam, T.V.; Kwon, Y.K.; Chan, S.L.; Kim, S.H.; Baik, S.H.; Yang, S.; Yun, Y.K.; Choi, Y.; Kim, S.; Tang, S.C.; Hyun, D.H.; Cheng, A.; Dann, C.E., III; Bernier, M.; Lee, J.; Markesbery, W.R.; Mattson, M.P.; Jo, D.G. Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer’s disease. Aging Cell, 2012, 11(4), 559-568.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00817.x] [PMID: 22404891]
[36]
Pascoal, T.A.; Mathotaarachchi, S.; Mohades, S.; Benedet, A.L.; Chung, C.O.; Shin, M.; Wang, S.; Beaudry, T.; Kang, M.S.; Soucy, J.P.; Labbe, A.; Gauthier, S.; Rosa-Neto, P. Amyloid-β and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol. Psychiatry, 2017, 22(2), 306-311.
[http://dx.doi.org/10.1038/mp.2016.37] [PMID: 27021814]
[37]
Marcello, E.; Di Luca, M.; Gardoni, F. Synapse-to-nucleus communication: From developmental disorders to Alzheimer’s disease. Curr. Opin. Neurobiol., 2018, 48, 160-166.
[http://dx.doi.org/10.1016/j.conb.2017.12.017] [PMID: 29316492]
[38]
Schreurs, A.; Latif-Hernandez, A.; Uwineza, A. Commentary: APP as a Mediator of the Synapse Pathology in Alzheimer’s Disease. Front. Cell. Neurosci., 2018, 12, 150.
[http://dx.doi.org/10.3389/fncel.2018.00150] [PMID: 29905239]
[39]
Ahmad, F.; Das, D.; Kommaddi, R.P.; Diwakar, L.; Gowaikar, R.; Rupanagudi, K.V.; Bennett, D.A.; Ravindranath, V. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer’s disease mice and correlates with memory deficits in human subjects. Sci. Rep., 2018, 8(1), 13119.
[http://dx.doi.org/10.1038/s41598-018-31073-6] [PMID: 30177812]
[40]
Lee, S.H.; Kim, K.R.; Ryu, S.Y.; Son, S.; Hong, H.S.; Mook-Jung, I.; Lee, S.H.; Ho, W.K. Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J. Neurosci., 2012, 32(17), 5953-5963.
[http://dx.doi.org/10.1523/JNEUROSCI.0465-12.2012] [PMID: 22539855]
[41]
Liu, S.L.; Wang, C.; Jiang, T.; Tan, L.; Xing, A.; Yu, J.T. The role of Cdk5 in Alzheimer’s disease. Mol. Neurobiol., 2016, 53(7), 4328-4342.
[http://dx.doi.org/10.1007/s12035-015-9369-x] [PMID: 26227906]
[42]
Kumazawa, A.; Mita, N.; Hirasawa, M.; Adachi, T.; Suzuki, H.; Shafeghat, N.; Kulkarni, A.B.; Mikoshiba, K.; Inoue, T.; Ohshima, T. Cyclin-dependent kinase 5 is required for normal cerebellar development. Mol. Cell. Neurosci., 2013, 52, 97-105.
[http://dx.doi.org/10.1016/j.mcn.2012.10.007] [PMID: 23085039]
[43]
Lopes, J.P.; Oliveira, C.R.; Agostinho, P. Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: The role of Cdk5. Aging Cell, 2010, 9(1), 64-77.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00536.x] [PMID: 19895631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy