Skip to main content
Log in

Speckle tracking echocardiography in heart failure development and progression in patients with apneas

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Obstructive (OA) and central apneas (CA) are highly prevalent breathing disorders that have a negative impact on cardiac structure and function; while OA promote the development of progressive cardiac alterations that can eventually lead to heart failure (HF), CA are more prevalent once HF ensues. Therefore, the early identification of the deleterious effects of apneas on cardiac function, and the possibility to detect an initial cardiac dysfunction in patients with apneas become relevant. Speckle tracking echocardiography (STE) imaging has become increasingly recognized as a method for the early detection of diastolic and systolic dysfunction, by the evaluation of left atrial and left and right ventricular global longitudinal strain, respectively. A growing body of evidence is available on the alterations of STE in OA, while very little is known with regard to CA. In this review, we discuss the current knowledge and gap of evidence concerning apnea-related STE alterations in the development and progression of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP (2009) Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 53 :263–76

  2. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K et al (2017) Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 13:479–504. https://doi.org/10.5664/jcsm.6506

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90:47–112. https://doi.org/10.1152/physrev.00043.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Emdin M, Mirizzi G, Giannoni A, Poletti R, Iudice G, Bramanti F et al (2017) Prognostic significance of central apneas throughout a 24-hour period in patients with heart failure. J Am Coll Cardiol 70:1351–1364. https://doi.org/10.1016/j.jacc.2017.07.740

    Article  PubMed  Google Scholar 

  5. Costanzo MR, Khayat R, Ponikowski P, Augostini R, Stellbrink C, Mianulli M et al (2015) Mechanisms and clinical consequences of untreated central sleep apnea in heart failure. J Am Coll Cardiol 65:72–84. https://doi.org/10.1016/j.jacc.2014.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cameli M, Mandoli GE, Sciaccaluga C, Mondillo S (2019) More than 10 years of speckle tracking echocardiography: still a novel technique or a definite tool for clinical practice? Echocardiography 36:958–970

    Article  Google Scholar 

  7. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014. https://doi.org/10.1093/aje/kws342

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kasai T, Bradley TD (2011) Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol 57:119–127. https://doi.org/10.1016/j.jacc.2010.08.627

    Article  PubMed  Google Scholar 

  9. White DP (2016) Pharmacologic approaches to the treatment of obstructive sleep apnea. Sleep Med Clin 11:203–212. https://doi.org/10.1016/j.jsmc.2016.01.007

    Article  PubMed  Google Scholar 

  10. Hersi AS (2010) Obstructive sleep apnea and cardiac arrhythmias. Annals of thoracic medicine 5:10–17

    Article  Google Scholar 

  11. Konecny T, Kara T, Somers VK (2014) Obstructive sleep apnea and hypertension: an update. Hypertension 63:203–209

    Article  CAS  Google Scholar 

  12. Floras JS (2014) Sleep apnea and cardiovascular risk. J Cardiol 63:3–8. https://doi.org/10.1016/j.jjcc.2013.08.009

    Article  PubMed  Google Scholar 

  13. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ et al (2008) Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 31:1071–1078

    Article  Google Scholar 

  14. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF et al (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122:352–360. https://doi.org/10.1161/CIRCULATIONAHA.109.901801

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O (2011) Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J Am Soc Echocardiogr 24:314–321. https://doi.org/10.1016/j.echo.2011.01.014

    Article  PubMed  Google Scholar 

  16. van Dalen BM, Soliman OI, Vletter WB, Kauer F, van der Zwaan HB, ten Cate FJ et al (2009) Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography. Eur J Echocardiogr 10:669–676. https://doi.org/10.1093/ejechocard/jep036

    Article  PubMed  Google Scholar 

  17. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU (2015) Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr 28:1171–1181, e2. https://doi.org/10.1016/j.echo.2015.06.011

  18. Cameli M, Caputo M, Mondillo S, Ballo P, Palmerini E, Lisi M et al (2009) Cardiovasc ultrasound 7:6. https://doi.org/10.1186/1476-7120-7-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stanton T, Marwick TH (2010) Assessment of subendocardial structure and function. JACC Cardiovasc Imaging 3:867–875. https://doi.org/10.1016/j.jcmg.2010.05.011

    Article  PubMed  Google Scholar 

  20. Kuppahally SS, Akoum N, Burgon NS, Badger TJ, Kholmovski EG, Vijayakumar S et al (2010) Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ Cardiovasc Imaging 3:231–239. https://doi.org/10.1161/CIRCIMAGING.109.865683

    Article  PubMed  Google Scholar 

  21. Cameli M, Lisi M, Righini FM, Massoni A, Natali BM, Focardi M et al (2013) Usefulness of atrial deformation analysis to predict left atrial fibrosis and endocardial thickness in patients undergoing mitral valve operations for severe mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol 111:595–601. https://doi.org/10.1016/j.amjcard.2012.10.049

    Article  PubMed  Google Scholar 

  22. Mandoli GE, Sisti N, Mondillo S, Cameli M (2020) Left atrial strain in left ventricular diastolic dysfunction: have we finally found the missing piece of the puzzle? Heart Fail Rev 25:409–417

    Article  Google Scholar 

  23. Cameli M, Sparla S, Losito M, Righini FM, Menci D, Lisi M et al (2016) Correlation of left atrial strain and Doppler measurements with invasive measurement of left ventricular end-diastolic pressure in patients stratified for different values of ejection fraction. Echocardiography 33:398–405. https://doi.org/10.1111/echo.13094

    Article  PubMed  Google Scholar 

  24. Meris A, Faletra F, Conca C, Klersy C, Regoli F, Klimusina J et al (2010) Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction. J Am Soc Echocardiogr 23:823–831. https://doi.org/10.1016/j.echo.2010.05.009

    Article  PubMed  Google Scholar 

  25. Sciaccaluga C, D’Ascenzi F, Mandoli GE, Rizzo L, Sisti N, Carrucola C et al (2020) Traditional and novel imaging of right ventricular function in patients with heart failure and reduced ejection fraction. Curr Heart Fail Rep 17:28–33. https://doi.org/10.1007/s11897-020-00455-1

    Article  CAS  PubMed  Google Scholar 

  26. Orban M, Bruce CJ, Pressman GS, Leinveber P, Romero-Corral A, Korinek J et al (2008) Dynamic changes of left ventricular performance and left atrial volume induced by the mueller maneuver in healthy young adults and implications for obstructive sleep apnea, atrial fibrillation, and heart failure. Am J Cardiol 102:1557–1561

    Article  Google Scholar 

  27. Baguet JP, Barone-Rochette G, Lévy P, Vautrin E, Pierre H, Ormezzano O, Pépin JL (2010) Left ventricular diastolic dysfunction is linked to severity of obstructive sleep apnoea. Eur Respir J 36:1323–1329. https://doi.org/10.1183/09031936.00165709

    Article  PubMed  Google Scholar 

  28. Sascău R, Zota IM, Stătescu C, Boișteanu D, Roca M, Maștaleru A, Leon Constantin MM, Vasilcu TF, Gavril RS, Mitu F (2018) Review of echocardiographic findings in patients with obstructive sleep apnea. Can Respir J 2018:1206217. https://doi.org/10.1155/2018/1206217

    Article  PubMed  PubMed Central  Google Scholar 

  29. Altekin RE, Yanikoglu A, Karakas MS, Ozel D, Kucuk M, Yilmaz H et al (2012) Assessment of left atrial dysfunction in obstructive sleep apnea patients with the two dimensional speckle-tracking echocardiography. Clin Res Cardiol 101:403–413. https://doi.org/10.1007/s00392-011-0404-2

    Article  PubMed  Google Scholar 

  30. Kim SM, Cho KI, Kwon JH, Lee HG, Kim TI (2012) Impact of obstructive sleep apnea on left atrial functional and structural remodeling beyond obesity. J Cardiol 60:475–483. https://doi.org/10.1016/j.jjcc.2012.07.007

    Article  PubMed  Google Scholar 

  31. Vural MG, Cetin S, Firat H, Akdemir R, Yeter E (2014) Impact of continuous positive airway pressure therapy on left atrial function in patients with obstructive sleep apnoea: assessment by conventional and two-dimensional speckle-tracking echocardiography. Acta Cardiol 69:175–184. https://doi.org/10.1080/ac.69.2.3017299

    Article  PubMed  Google Scholar 

  32. Çetin S, Vural M, Akdemir R, Fırat H (2018) Left atrial remodelling may predict exercise capacity in obstructive sleep apnoea patients. Acta Cardiol 73:471–478. https://doi.org/10.1080/00015385.2017.1414730

    Article  PubMed  Google Scholar 

  33. Wan Q, Xiang G, Xing Y, Hao S, Shu X, Pan C et al (2021) Left atrial dysfunction in patients with obstructive sleep apnea: a combined assessment by speckle tracking and real-time three-dimensional echocardiography. Ann Palliat Med 10:2668–2678. https://doi.org/10.21037/apm-20-1125

    Article  PubMed  Google Scholar 

  34. Cameli M, Mandoli GE, Loiacono F, Sparla S, Iardino E, Mondillo S (2016) Left atrial strain: a useful index in atrial fibrillation. Int J Cardiol 220:208–213. https://doi.org/10.1016/j.ijcard.2016.06.197

    Article  PubMed  Google Scholar 

  35. Koshino Y, Villarraga HR, Orban M, Bruce CJ, Pressman GS, Leinveber P et al (2010) Changes in left and right ventricular mechanics during the Mueller maneuver in healthy adults: a possible mechanism for abnormal cardiac function in patients with obstructive sleep apnea. Circ Cardiovasc Imaging 3:282–289. https://doi.org/10.1161/CIRCIMAGING.109.901561

    Article  PubMed  Google Scholar 

  36. Smith JR, Sutterfield SL, Baumfalk DR, Didier KD, Hammer SM, Caldwell JT et al (1985) (2017) Left ventricular strain rate is reduced during voluntary apnea in healthy humans. J Appl Physiol 123:1730–1737. https://doi.org/10.1152/japplphysiol.00327.2017

    Article  CAS  Google Scholar 

  37. Cho KI, Kwon JH, Kim SM, Park TJ, Lee HG, Kim TI (2012) Impact of obstructive sleep apnea on the global myocardial performance beyond obesity. Echocardiography 29:1071–1080. https://doi.org/10.1111/j.1540-8175.2012.01762.x

    Article  PubMed  Google Scholar 

  38. Vitarelli A, D’Orazio S, Caranci F, Capotosto L, Rucos R, Iannucci G et al (2013) Left ventricular torsion abnormalities in patients with obstructive sleep apnea syndrome: an early sign of subclinical dysfunction. Int J Cardiol 165:512–518. https://doi.org/10.1016/j.ijcard.2011.09.030

    Article  PubMed  Google Scholar 

  39. Wang D, Ma GS, Wang XY, Lu QQ, Wang Y, Liu NF (2016) Left ventricular subclinical dysfunction associated with myocardial deformation changes in obstructive sleep apnea patients estimated by real-time 3D speckle-tracking echocardiography. Sleep Breath 20:135–144. https://doi.org/10.1007/s11325-015-1197-8

    Article  PubMed  Google Scholar 

  40. D’Andrea A, Martone F, Liccardo B, Mazza M, Annunziata A, Di Palma E et al (2016) Acute and chronic effects of noninvasive ventilation on left and right myocardial function in patients with obstructive sleep apnea syndrome: a speckle tracking echocardiographic study. Echocardiography 33:1144–1155. https://doi.org/10.1111/echo.13225

    Article  PubMed  Google Scholar 

  41. Zhou NW, Shu XH, Liu YL, Shen H, Li WJ, Gong X et al (2016) A novel method for sensitive determination of subclinical left-ventricular systolic dysfunction in subjects with obstructive sleep apnea. Respir Care 61:366–375. https://doi.org/10.4187/respcare.04381

    Article  PubMed  Google Scholar 

  42. Varghese MJ, Sharma G, Shukla G, Seth S, Mishra S, Gupta A et al (2017) Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: a case control study using speckle tracking imaging. Indian Heart J 69:305–310. https://doi.org/10.1016/j.ihj.2016.12.011

    Article  PubMed  Google Scholar 

  43. Vural MG, Çetin S, Keser N, Firat H, Akdemir R, Gunduz H (2017) Left ventricular torsion in patients with obstructive sleep apnoea before and after continuous positive airway pressure therapy: assessment by two-dimensional speckle tracking echocardiography. Acta Cardiol 72:638–647. https://doi.org/10.1080/00015385.2017.1315257

    Article  PubMed  Google Scholar 

  44. D’Andrea A, Canora A, Sperlongano S, Galati D, Zanotta S, Polistina GE et al (2020) Subclinical impairment of dynamic left ventricular systolic and diastolic function in patients with obstructive sleep apnea and preserved left ventricular ejection fraction. BMC Pulm Med 20:76. https://doi.org/10.1186/s12890-020-1099-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ma CY, Sanderson JE, Chen Q, Zhan XJ, Wu C, Liu H, et al (2021) Subclinical left ventricular systolic dysfunction detected in obstructive sleep apnea with automated function imaging and its association with nocturnal hypoxia. Sleep Breath; 7. https://doi.org/10.1007/s11325-021-02330-2

  46. Kepez A, Niksarlioglu EY, Hazirolan T, Ranci O, Kabul HK, Demir AU et al (2009) Early myocardial functional alterations in patients with obstructive sleep apnea syndrome. Echocardiography 26:388–396. https://doi.org/10.1111/j.1540-8175.2008.00809.x

    Article  PubMed  Google Scholar 

  47. Güvenç TS, Hüseyinoğlu N, Özben S, Kul Ş, Çetin R, Özen K et al (2016) Right ventricular geometry and mechanics in patients with obstructive sleep apnea living at high altitude. Sleep Breath 20:5–13. https://doi.org/10.1007/s11325-015-1175-1

    Article  PubMed  Google Scholar 

  48. Vitarelli A, Terzano C, Saponara M, Gaudio C, Mangieri E, Capotosto L et al (2015) Assessment of right ventricular function in obstructive sleep apnea syndrome and effects of continuous positive airway pressure therapy: a pilot study. Can J Cardiol 31:823–831. https://doi.org/10.1016/j.cjca.2015.01.029

    Article  PubMed  Google Scholar 

  49. Buonauro A, Galderisi M, Santoro C, Canora A, Bocchino ML, Lo Iudice F et al (2017) Obstructive sleep apnoea and right ventricular function: a combined assessment by speckle tracking and three-dimensional echocardiography. Int J Cardiol 243:544–549. https://doi.org/10.1016/j.ijcard.2017.05.002

    Article  PubMed  Google Scholar 

  50. Chu AA, Yu HM, Yang H, Tian LM, Hu ZY, Jiang N et al (2020) Evaluation of right ventricular performance and impact of continuous positive airway pressure therapy in patients with obstructive sleep apnea living at high altitude. Sci Rep 10:20186. https://doi.org/10.1038/s41598-020-71584-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marin JM, Agusti A, Villar I, Forner M, Nieto D, Carrizo SJ et al (2012) Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 307:2169–2176

    Article  CAS  Google Scholar 

  52. Young T, Peppard P, Palta M, Hla KM, Finn L, Morgan B et al (1997) Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med 157:1746–1752

    Article  CAS  Google Scholar 

  53. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC et al (2011) Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 58:811–817

    Article  CAS  Google Scholar 

  54. Goncalves SC, Martinez D, Gus M, de Abreu-Silva EO, Bertoluci C, Dutra I et al (2007) Obstructive sleep apnea and resistant hypertension: a case-control study. Chest 132:1858–1862

    Article  Google Scholar 

  55. Waeber B, Mourad JJ, O’Brien E (2010) Hypertens Rep 12:474–479. https://doi.org/10.1007/s11906-010-0152-0

    Article  Google Scholar 

  56. Cameli M, Lisi M, Righini FM, Massoni A, Mondillo S (2013) Left ventricular remodeling and torsion dynamics in hypertensive patients. Int J Cardiovasc Imaging 29:79–86. https://doi.org/10.1007/s10554-012-0054-0

    Article  PubMed  Google Scholar 

  57. Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG (2019) Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 15:335–343. https://doi.org/10.5664/jcsm.7640

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Zhang Y, Dong Z, Fan J, Nie S, Wei Y (2018) Effect of continuous positive airway pressure on long-term cardiovascular outcomes in patients with coronary artery disease and obstructive sleep apnea: a systematic review and meta-analysis. Respir Res 19:61. https://doi.org/10.1186/s12931-018-0761-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Labarca G, Dreyse J, Drake L, Jorquera J, Barbe F (2020) Efficacy of continuous positive airway pressure (CPAP) in the prevention of cardiovascular events in patients with obstructive sleep apnea: systematic review and meta-analysis. Sleep Med Rev 52:101312. https://doi.org/10.1016/j.smrv.2020.101312

    Article  PubMed  Google Scholar 

  60. Haruki N, Takeuchi M, Kanazawa Y, Tsubota N, Shintome R, Nakai H et al (2010) Continuous positive airway pressure ameliorates sleep-induced subclinical left ventricular systolic dysfunction: demonstration by two-dimensional speckle-tracking echocardiography. Eur J Echocardiogr 11:352–358. https://doi.org/10.1093/ejechocard/jep215

    Article  PubMed  Google Scholar 

  61. Hammerstingl C, Schueler R, Wiesen M, Momcilovic D, Pabst S, Nickenig G et al (2013) Impact of untreated obstructive sleep apnea on left and right ventricular myocardial function and effects of CPAP therapy. PLoS ONE 8:e76352. https://doi.org/10.1371/journal.pone.0076352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim D, Shim CY, Cho YJ, Park S, Lee CJ, Park JH et al (2019) Continuous positive airway pressure therapy restores cardiac mechanical function in patients with severe obstructive sleep apnea: a randomized, sham-controlled study. J Am Soc Echocardiogrn 32:826–835. https://doi.org/10.1016/j.echo.2019.03.020

    Article  Google Scholar 

  63. Fein AS, Shvilkin A, Shah D, Haffajee CI, Das S, Kumar K et al (2013) Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol 62:300–305

    Article  Google Scholar 

  64. Li L, Wang ZW, Li J, Ge X, Guo LZ, Wang Y, Guo WH, Jiang CX, Ma CS (2014) Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies. Europace 16:1309–1314. https://doi.org/10.1093/europace/euu066

    Article  PubMed  Google Scholar 

  65. Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Topfer V (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257. https://doi.org/10.1016/j.ejheart.2006.08.003

    Article  PubMed  Google Scholar 

  66. Borrelli C, Gentile F, Sciarrone P, Mirizzi G, Vergaro G, Ghionzoli N, Bramanti F, Iudice G, Passino C, Emdin M, Giannoni A (2019) Central and obstructive apneas in heart failure with reduced, mid-range and preserved ejection fraction. Front Cardiovasc Med 6:125. https://doi.org/10.3389/fcvm.2019.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giannoni A, Gentile F, Sciarrone P, Borrelli C, Pasero G, Mirizzi G et al (2020) Upright Cheyne-Stokes respiration in patients with heart failure. J Am Coll Cardiol 75:2934–2946. https://doi.org/10.1016/j.jacc.2020.04.033

    Article  CAS  PubMed  Google Scholar 

  68. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D et al (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594. https://doi.org/10.1161/01.cir.96.8.2586

    Article  CAS  PubMed  Google Scholar 

  69. Giannoni A, Emdin M, Poletti R, Bramanti F, Prontera C, Piepoli M et al (2008) Clinical significance of chemosensitivity in chronic heart failure: influence on neurohormonal derangement, Cheyne-Stokes respiration and arrhythmias. Clin Sci (Lond) 114:489–497. https://doi.org/10.1042/CS20070292

    Article  CAS  Google Scholar 

  70. Giannoni A, Emdin M, Bramanti F, Iudice G, Francis DP, Barsotti A et al (2009) Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J Am Coll Cardiol 53:1975–1980. https://doi.org/10.1016/j.jacc.2009.02.030

    Article  PubMed  Google Scholar 

  71. Giannoni A, Gentile F, Navari A, Borrelli C, Mirizzi G, Catapano G et al (2019) Contribution of the lung to the genesis of Cheyne-Stokes respiration in heart failure: plant gain beyond chemoreflex gain and circulation time. J Am Heart Assoc 8:e012419. https://doi.org/10.1161/JAHA.119.012419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oldenburg O, Bitter T, Wiemer M, Langer C, Horstkotte D, Piper C (2009) Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med 10:726–730. https://doi.org/10.1016/j.sleep.2008.08.004

    Article  PubMed  Google Scholar 

  73. Giannoni A, Raglianti V, Taddei C, Borrelli C, Chubuchny V, Vergaro G et al (2019) Cheyne-Stokes respiration related oscillations in cardiopulmonary hemodynamics in patients with heart failure. Int J Cardiol 289:76–82. https://doi.org/10.1016/j.ijcard.2019.03.033

    Article  PubMed  Google Scholar 

  74. Potter E, Marwick TH (2017) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 11:260–274. https://doi.org/10.1016/j.jcmg.2017.11.017

    Article  Google Scholar 

  75. Christ M, Grimm W, Rostig S, Klima T, Fenske H, Becker HF, Vogelmeier C, Maisch B (2003) Association of right ventricular dysfunction and Cheyne-Stokes respiration in patients with chronic heart failure. J Sleep Res 12:161–167. https://doi.org/10.1046/j.1365-2869.2003.00343.x

    Article  PubMed  Google Scholar 

  76. Javaheri S, Shukla R, Zeigler H, Wexler L (2007) Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol 49:2028–2034. https://doi.org/10.1016/j.jacc.2007.01.084

    Article  PubMed  Google Scholar 

  77. Daubert MA, Whellan DJ, Woehrle H, Tasissa G, Anstrom KJ, Lindenfeld J et al (2018) Treatment of sleep-disordered breathing in heart failure impacts cardiac remodeling: insights from the CAT-HF trial. Am Heart J 201:40–48. https://doi.org/10.1016/j.ahj.2018.03.026

    Article  PubMed  Google Scholar 

  78. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E et al (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105. https://doi.org/10.1056/NEJMoa1506459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Costanzo MR, Ponikowski P, Javaheri S, Augostini R, Goldberg L, Holcomb R (2016) remedé System Pivotal Trial Study Group Transvenous neurostimulation for central sleep apnoea: a randomised controlled trial. Lancet 388:974–82. https://doi.org/10.1016/S0140-6736(16)30961-8

  80. Fontana M, Emdin M, Giannoni A, Iudice G, Baruah R, Passino C (2011) Effect of acetazolamide on chemosensitivity, Cheyne-Stokes respiration, and response to effort in patients with heart failure. Am J Cardiol 107:1675–1680. https://doi.org/10.1016/j.amjcard.2011.01.060

    Article  CAS  PubMed  Google Scholar 

  81. Javaheri S, Parker TJ, Wexler L, Liming JD, Lindower P, Roselle GA (1996) Effect of theophylline on sleep-disordered breathing in heart failure. N Engl J Med 335:562–567. https://doi.org/10.1056/NEJM199608223350805

    Article  CAS  PubMed  Google Scholar 

  82. Giannoni A, Borrelli C, Mirizzi G, Richerson GB, Emdin M, Passino C (2021) Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial. Eur J Heart Fail 23:312–320. https://doi.org/10.1002/ejhf.1854

    Article  CAS  PubMed  Google Scholar 

  83. Bitter T, Faber L, Hering D, Langer C, Horstkotte D, Oldenburg O (2009) Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail 11:602–608. https://doi.org/10.1093/eurjhf/hfp057

    Article  PubMed  Google Scholar 

  84. Mäuser W, Sandrock S, Demming T, Kotzott L, Bonnemeier H (2013) Sleep disordered breathing is an independent risk factor for left atrial enlargement in patients with congestive heart failure. Int J Cardiol 167:2323–2324. https://doi.org/10.1016/j.ijcard.2012.11.017

    Article  PubMed  Google Scholar 

  85. Chenuel BJ, Smith CA, Skatrud JB, Henderson KS, Dempsey JA (2006) Increased propensity for apnea in response to acute elevations in left atrial pressure during sleep in the dog. J Appl Physiol 101:76–83. https://doi.org/10.1152/japplphysiol.01617.2005

    Article  Google Scholar 

  86. Haruki N, Tsang W, Thavendiranathan P, Woo A, Tomlinson G, Logan AG,: ADVENT-HF Investigators, et al (2016) Sleep apnea and left atrial phasic function in heart failure with reduced ejection fraction. Can J Cardiol 32:1402–1410. https://doi.org/10.1016/j.cjca.2016.02.047

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Giannoni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Giulia Elena Mandoli and Chiara Borrelli have contributed equally and share first authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandoli, G.E., Borrelli, C., Cameli, M. et al. Speckle tracking echocardiography in heart failure development and progression in patients with apneas. Heart Fail Rev 27, 1869–1881 (2022). https://doi.org/10.1007/s10741-021-10197-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10197-4

Keywords

Navigation