Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Non-trivial role of internal climate feedback on interglacial temperature evolution

The Original Article was published on 01 December 2021

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zhang, X. & Chen, F. Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature https://doi.org/10.1038/s41586-021-03930-4 (2021).

  2. Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548–553 (2021).

    Article  ADS  CAS  Google Scholar 

  3. Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    Article  CAS  Google Scholar 

  4. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  ADS  CAS  Google Scholar 

  5. Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past https://doi.org/10.5194/cp-2019-168 (2020).

  7. Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

    Article  ADS  Google Scholar 

  8. Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanogr. Paleoclimatol. 29, 680–696 (2014).

    Article  ADS  Google Scholar 

  9. Mohtadi, M. et al. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java: a sediment trap study. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2008PA001636 (2009).

  10. Lin, H.-L., Wang, W.-C. & Hung, G.-W. Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Mar. Micropaleontol. 53, 447–460 (2004).

    Article  ADS  Google Scholar 

  11. Sautter, L. R. & Thunell, R. C. Seasonal variability in the δ18O and δ13C of planktonic foraminifera from an upwelling environment: sediment trap results from the San Pedro Basin, Southern California Bight. Paleoceanogr. Paleoclimatol. 6, 307–334 (1991).

    Article  ADS  Google Scholar 

  12. Thunell, R. C. & Reynolds, L. A. Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin. Micropaleontology 30, 243–262 (1984).

    Article  Google Scholar 

  13. Sawada, K., Handa, N. & Nakatsuka, T. Production and transport of long-chain alkenones and alkyl alkenoates in a sea water column in the northwestern Pacific off central Japan. Mar. Chem. 59, 219–234 (1998).

    Article  CAS  Google Scholar 

  14. Sikes, E. L., O’Leary, T., Nodder, S. D. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the chatham rise, SW Pacific Ocean. Deep Sea Res. I 52, 721–748 (2005).

    Article  ADS  CAS  Google Scholar 

  15. Kienast, M. et al. Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: implications for SST reconstructions. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2011PA002254 (2012).

  16. Hertzberg, J. E. & Schmidt, M. W. Refining Globigerinoides ruber Mg/Ca paleothermometry in the Atlantic Ocean. Earth Planet. Sci. Lett. 383, 123–133 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    Article  ADS  CAS  Google Scholar 

  18. Malmierca-Vallet, I. et al. Simulating the Last Interglacial Greenland stable water isotope peak: the role of Arctic sea ice changes. Quat. Sci. Rev. 198, 1–14 (2018).

    Article  ADS  Google Scholar 

  19. Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2004pa001071 (2005).

  21. Shackleton, S. et al. Global ocean heat content in the Last Interglacial. Nat. Geosci. 13, 77–81 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article  ADS  CAS  Google Scholar 

  23. Rosenthal, Y., Linsley, B. K. & Oppo, D. W. Pacific Ocean heat content during the past 10,000 years. Science 342, 617–621 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the NSF grants OCE-1834208 and OCE-1810681, the NSF-sponsored US Science Support Program for IODP, the Institute of Earth, Ocean, and Atmospheric Sciences at Rutgers University, the Chinese NSF (41630527), the School of Geography, Nanjing Normal University, and the USIEF-Fulbright Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception of the presented ideas. S.B. wrote the first manuscript draft. All authors provided review and editing. Two authors not on the original paper were added to the author list. C.Z. provided additional analysis of model results. A.J.B. provided critical feedback and discussion.

Corresponding author

Correspondence to Samantha Bova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bova, S., Rosenthal, Y., Liu, Z. et al. Reply to: Non-trivial role of internal climate feedback on interglacial temperature evolution. Nature 600, E4–E6 (2021). https://doi.org/10.1038/s41586-021-03931-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03931-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing