Skip to main content
Log in

\(\Phi \)-Harmonic Maps and \(\Phi \)-Superstrongly Unstable Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We motivate and define \(\Phi \)-energy density, \(\Phi \)-energy, \(\Phi \)-harmonic maps and stable \(\Phi \)-harmonic maps. Whereas harmonic maps or p-harmonic maps can be viewed as critical points of the integral of the first symmetric function \(\sigma _1\) of a pull-back tensor, \(\Phi \)-harmonic maps can be viewed as critical points of the integral of the second symmetric function \(\sigma _2\) of a pull-back tensor. By an extrinsic average variational method in the calculus of variations [cf. Howard and Wei (Trans Am Math Soc 294:319–331, 1986), Wei and Yau (J Geom Anal 4(2):247–272, 1994), Wei (Indiana Univ Math J 47(2):625–670, 1998) and Howard and Wei (Contemp Math 646:127–167, 2015)], we derive the average second variation formulas for \(\Phi \)-energy functional, express them in orthogonal notation in terms of the differential matrix, and find \(\Phi \)-superstrongly unstable \((\Phi \)-\(\text {SSU})\) manifolds. We prove, in particular that every compact \(\Phi \)-\(\text {SSU}\) manifold must be \(\Phi \)-strongly unstable \((\Phi \)-\(\text {SU})\), i.e., (a) A compact \(\Phi \)-\(\text {SSU}\) manifold cannot be the target of any nonconstant stable \(\Phi \)-harmonic maps from any manifold, (b) The homotopic class of any map from any manifold into a compact \(\Phi \)-\(\text {SSU}\) manifold contains elements of arbitrarily small \(\Phi \)-energy, (c) A compact \(\Phi \)-\(\text {SSU}\) manifold cannot be the domain of any nonconstant stable \(\Phi \)-harmonic map into any manifold, and (d) The homotopic class of any map from a compact \(\Phi \)-\(\text {SSU}\) manifold into any manifold contains elements of arbitrarily small \(\Phi \)-energy [cf. Theorem 1.1(a),(b),(c), and (d).] We provide many examples of \(\Phi \)-\(\text {SSU}\) manifolds, which include but not limit to spheres or some unstable Yang-Mills fields [cf. Bourguignon et al. (Proc Natl Acad Sci 76(4):1550–1553, 1979), Bourguignon and Lawson (Commun Math Phys 79(2):189–230, 1981), Kobayashi et al. (Math Z 193(2):165–189, 1986), Wei (Indiana Univ Math J 33(4):511–529, 1984) and Wu et al. (Br J Math Comput Sci 8(4):318–329, 2015)], and examples of \(\Phi \)-harmonic, or \(\Phi \)-unstable map from or into \(\Phi \)-\(\text {SSU}\) manifold that are not constant. We establish a link of \(\Phi \)-SSU manifold to p-SSU manifold and topology. The extrinsic average variational method in the calculus of variations, employed is in contrast to an average method in PDE that we applied in Chen and Wei (J Geom Symmetry Phys 52:27–46, 2019) to obtain sharp growth estimates for warping functions in multiply warped product manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, T.: Quations differentielles non linaires et problme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(9), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys. 79(2), 189–230 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bourguignon, J.P., Lawson, H.B., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Natl. Acad. Sci. 76(4), 1550–1553 (1979)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L., Nirenberg, L., Spruck, J.: Nonlinear second order elliptic equations. Iv. Starshaped compact Weingarten hypersurfaces. In: Current Topics in Partial Differential Equations, pp. 1–26. Kinokuniya, Tokyo (1986)

    Google Scholar 

  5. Chang, S.-Y.A., Yang, P.C.: The inequality of Moser and Trudinger and applications to conformal geometry. Dedicated to the memory of Jrgen K. Moser. Commun. Pure Appl. Math. 56(8), 1135–1150 (2003)

    Article  Google Scholar 

  6. Chen, B.-Y., Wei, S.W.: Sharp growth estimates for warping functions in multiply warped product manifolds. J. Geom. Symmetry Phys. 52, 27–46 (2019). arXiv:1809.05737.v1

    Article  MathSciNet  Google Scholar 

  7. Delanoë, P.: Plongements radiaux \(S^nhookrightarrow {mathbb{R}}^{n+1}\) courbure de Gauss positive prescrite. (French) [Radial embeddings \(S^nhookrightarrow {mathbb{R}}^{n+1}\) with prescribed positive Gauss curvature]. Ann. Sci. cole Norm. Sup. (4) 18(4), 635–649 (1985)

    Article  MathSciNet  Google Scholar 

  8. Dong, Y.. X.., Wei, S..W..: On vanishing theorems for vector bundle valued \(p\)-forms and their applications. Commun. Math. Phys. 304(2), 329–368 (2011). arXiv: 1003.3777

    Article  MathSciNet  Google Scholar 

  9. Dong, Y.X., Lin, H., Wei, S.W.: \(L^2\) curvature pinching theorems and vanishing theorems on complete Riemannian manifolds. Tohoku Math. J. 71, (2019). arXiv:1604.04862

  10. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  Google Scholar 

  11. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20, 385–524 (1988)

    Article  MathSciNet  Google Scholar 

  12. Eells, J., Lemaire, L.: Selected topics in harmonic maps, CBMS Regional Conf. Series Number 50

  13. Eells, J., Ratto, A.: Harmonic Maps and Minimal Immersions with Symmetries. Annals of Mathematics Studies, vol. 130. Princeton University Press, Princeton (1993)

    Book  Google Scholar 

  14. Freedman, M.H.: The topology of four dimensional manifolds. J. Differ. Geom. 17, 357–454 (1982)

    Article  MathSciNet  Google Scholar 

  15. Howard, R., Wei, S.W.: Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space. Trans. Am. Math. Soc. 294, 319–331 (1986)

    Article  MathSciNet  Google Scholar 

  16. Howard, R., Wei, S.W.: On the existence and nonexistence of stable submanifolds and currents in positively curved manifolds and the topology of submanifolds in Euclidean spaces. Geometry and topology of submanifolds and currents, 127–167, Contemp. Math., 646, Amer. Math. Soc., Providence, RI, 2015. Contemp. Math., 646, 127-167 (2015)

  17. Jin, Z.R.: A counterexample to the Yamabe problem for complete noncompact manifolds. Lect. Notes Math. 1306, 93–101 (1988)

    Article  MathSciNet  Google Scholar 

  18. Kawai, S., Nakauchi, N.: Some result for stationary maps of a functional related to pullback metrics. Nonlinear Anal. 74, 2284–2295 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kawai, S., Nakauchi, N.: Stationary maps of a functional related to pullbacks of metrics. Differ. Geom. Appl. 44, 161–177 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I. Interscience, New York (1969)

    MATH  Google Scholar 

  21. Kobayashi, S., Ohnita, Y., Takeuchi, M.: On instability of Yang-Mills connections. Math. Z. 193(2), 165–189 (1986)

    Article  MathSciNet  Google Scholar 

  22. Lawson, H.B.: Lectures on Minimal Submanifolds, vol. 1. Publish or Perish, Berkeley (1980)

    MATH  Google Scholar 

  23. Lawson, H.B., Simons, J.: On stable currents, and their application to global problems in real and complex geometry. Ann. Math. 110, 127–142 (1979)

    Article  MathSciNet  Google Scholar 

  24. Leung, P.F.: On the stability of harmonic maps. In: Harmonic Maps. Lecture Notes in Mathematics, vol. 949, Springer, Berlin, pp. 122–129 (1982)

  25. Nakauchi, N.: A variational problem related to conformal maps. Osaka J. Math. 48, 719–741 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Nakauchi, N., Takenaka, Y.: A variational problem for pullback metrics. Ricerche Mat. 60, 219–235 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ohnita, Y.: Stability of harmonic maps and standard minimal immersions. Tohoku Math. J. (2) 38(2), 259–267 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Oliker, V.I.: Hypersurfaces in \({\mathbb{R}}^{n+1}\) with prescribed Gaussian curvature and related equations of Monge-Ampre type. Commun. Partial Differ. Eqn. 9(8), 807–838 (1984)

    Article  Google Scholar 

  29. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Article  MathSciNet  Google Scholar 

  30. Shen, Y.B., Pan, Y.L.: Harmonic maps of ellipsoids (in Chinese). Math. Acta Sci. 6, 71–75 (1986)

    Google Scholar 

  31. Smale, S.: Generalized Poincaré conjecture in dimension greater than four. Ann. Math. 74, 391–406 (1961)

    Article  MathSciNet  Google Scholar 

  32. Smith, R.T.: The second variational formula for harmonic mapping. Proc. Am. Math. Soc. 47, 229–236 (1975)

    Article  Google Scholar 

  33. Spanier, E.: Algebraic Topology. McGraw-Hill, New York

  34. Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 18, 380–385 (1966)

    Article  MathSciNet  Google Scholar 

  35. Treibergs, A.E., Wei, S.W.: Embedded hyperspheres with prescribed mean curvature. J. Differ. Geom. 18(3), 513–521 (1983)

    Article  MathSciNet  Google Scholar 

  36. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  37. Wei, S.W.: An average process in the calculus of variations and the stability of harmonic maps. Bull. Inst. Math. Acad. Sin. 11(3), 469–474 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Wei, S.W.: On topological vanishing theorems and the stability of Yang-Mills fields. Indiana Univ. Math. J. 33(4), 511–529 (1984)

    Article  MathSciNet  Google Scholar 

  39. Wei, S.W.: An Extrinsic Average Variational Method, Recent Developments in Geometry (Los Angeles, CA, 1987), Contemporary Mathematics, vol. 101, American Mathematical Society, Providence, RI, pp. 55–78 (1989)

  40. Wei, S.W.: Representing homotopic group and spaces of maps by by \(p\)-harmonic maps. Indiana Univ. Math. J. 47(2), 625–670 (1998)

    Article  MathSciNet  Google Scholar 

  41. Wei, S.W., Yau, C.M.: Regularity of \(p\)-energy minimizing maps and \(p\)-superstrongly unstable indices. J. Geom. Anal. 4(2), 247–272 (1994)

    Article  MathSciNet  Google Scholar 

  42. Wu, L.N., Wei, S.W., Liu, J., Li, Y.: Discovering geometric and topological properties of ellipsoids by curvatures. Br. J. Math. Cumput. Sci. 8(4), 318–329 (2015)

    Article  Google Scholar 

  43. Xin, Y.L.: Some results stable harmonic maps. Duke Math. J. 609–613 (1980)

  44. Yau, S.T.: Problem Section. Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 669–706. Princeton University Press, Princeton (1982)

Download references

Acknowledgements

This work was written while the first author visited Department of Mathematics of the University of Oklahoma in USA. He would like to express his sincere thanks to Professor Shihshu Walter Wei for his help, hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbo Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Han: Research supported in part by the National Natural Science Foundation of China (Grant No. 11971415, 11701494) and the Nanhu Scholars Program for Young Scholars of XYNU. S. W. Wei: Research supported in part by NSF (DMS-1447008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wei, S.W. \(\Phi \)-Harmonic Maps and \(\Phi \)-Superstrongly Unstable Manifolds. J Geom Anal 32, 3 (2022). https://doi.org/10.1007/s12220-021-00770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00770-6

Keywords

Mathematics Subject Classification

Navigation