Skip to main content
Log in

Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider fractional degenerate and non-degenerate Kirchhoff type Schrödinger–Choquard problems with upper critical exponent, respectively. By studying the solutions of limit problems for above problems and establishing some local and global compactness results, we provide some sufficient conditions under which above problems have at least one or two bounded state solutions. Our main tools adopted in our proof are splitting theorem and linking theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    Article  MathSciNet  Google Scholar 

  2. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  Google Scholar 

  3. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  4. Alves, C.O., Figueiredo, G.M., Molle, R.: Multiple positive bound state solutions for a critical Choquard equation. Discrete Contin. Dyn. Syst. https://doi.org/10.3934/dcds.2021061.

  5. Ambrosio, V.: Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potential Anal. 50, 55–82 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bueno, H., da Hora Lisboa, N., Vieira, L.L.: Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent. Z. Angew. Math. Phys. 71, 1–26 (2020)

    Article  MathSciNet  Google Scholar 

  7. Fiscella, A., Pucci, P.: Degenerate Kirchhoff \((p, q)\)-fractional systems with critical nonlinearities. Fract. Calc. Appl. Anal. 23, 723–752 (2020)

    Article  MathSciNet  Google Scholar 

  8. Gao, F.S., da Silva, E.D., Yang, M.B., Zhou, J.Z.: Existence of solutions for critical Choquard equations via the concentration compactness method. Proc. R. Soc. Edinb. Sect. A Math. 150, 921–954 (2020)

    Article  MathSciNet  Google Scholar 

  9. Gao, F.S., Shen, Z.F., Yang, M.B.: On the critical Choquard equation with potential well. Discrete Contin. Dyn. Syst. 38, 3567–3593 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gao, F.S., Yang, M.B.: On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents. J. Math. Anal. Appl. 448, 1006–1041 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gao, F.S., Yang, M.B.: On the Brezis–Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271, 107–135 (2016)

    Article  MathSciNet  Google Scholar 

  13. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Doubly nonlocal system with Hardy–Littlewood–Sobolev critical nonlinearity. J. Math. Anal. Appl. 467, 638–672 (2018)

    Article  MathSciNet  Google Scholar 

  14. Goel, D., Sreenadh, K.: Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity. Nonlinear Anal. 186, 162–186 (2019)

    Article  MathSciNet  Google Scholar 

  15. Guo, L., Hu, T.X., Peng, S.J., Shuai, W.: Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Calc. Var. Partial Differ. Equ. 58, 1–34 (2019)

    Article  MathSciNet  Google Scholar 

  16. He, X.M., Rǎdulescu, V.D.: Small linear perturbations of fractional Choquard equations with critical exponent. J. Differ. Equ. 282, 481–540 (2021)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z.: Multiple normalized solutions for Choquard equations involving Kirchhoff type perturbation. Topol. Methods Nonlinear Anal. 54, 297–319 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  19. Mukherjee, T., Sreenadh, K.: Fractional Choquard equations with critical nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 24, 34 (2017)

    Article  MathSciNet  Google Scholar 

  20. Moroz, V., Schaftingen, J.V.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  21. Mukherjee, T., Sreenadh, K.: Critical growth elliptic problems with Choquard type nonlinearity: a survey. arxiv preprint. arXiv:1811.04353v1

  22. Liang, S.H., Pucci, P., Zhang, B.L.: Multiple solutions for critical Choquard–Kirchhoff type equations. Adv. Nonlinear Anal. 10, 400–419 (2021)

    Article  MathSciNet  Google Scholar 

  23. Liang, S.H., Rǎdulescu, V.D.: Existence of infinitely many solutions for degenerate Kirchhoff-type Schrödinger–Choquard equations. Electron. J. Differ. Equ. 2017, 1–17 (2017)

    Article  Google Scholar 

  24. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12, 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  25. Song, Y.Q., Shi, S.Y.: Infinitely many solutions for Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 113, 3223–3232 (2019)

    Article  MathSciNet  Google Scholar 

  26. Song, Y.Q., Shi, S.Y.: Existence and multiplicity of solutions for Kirchhoff equations with Hardy–Littlewood–Sobolev critical nonlinearity. Appl. Math. Lett. 92, 170–175 (2019)

    Article  MathSciNet  Google Scholar 

  27. Su, Y., Chen, H.B.: Fractional Kirchhoff-type equation with Hardy–Littlewood–Sobolev critical exponent. Comput. Math. Appl. 78, 2063–2082 (2019)

    Article  MathSciNet  Google Scholar 

  28. Wang, F.L., Xiang, M.Q.: Mulitiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity. Anal. Math. Phys. 9, 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wang, F.L., Hu, D., Xiang, M.Q.: Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems. Adv. Nonlinear Anal. 10, 636–658 (2021)

    Article  MathSciNet  Google Scholar 

  30. Mingione, G., Rǎdulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 501, 125197 (2021)

    Article  MathSciNet  Google Scholar 

  31. Benci, V., Cerami, G.: Existence of positive solutions of the the equation \(-\Delta u+a(x) u= u^{\frac{N+2}{N-2}}\) in \({\mathbb{R}}^N\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  Google Scholar 

  32. Correia, J.N., Figueiredo, G.M.: Existence of positive solution of the equation \((-\Delta )^s u+a(x) u= |u|^{2_s^* -2}u\). Calc. Var. Partial Differ. Equ. 58, 1–39 (2019)

    Article  Google Scholar 

  33. Xie, Q.L.: Bounded state solution of degenerate Kirchhoff type problem with a critical exponent. J. Math. Anal. Appl. 479, 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  34. Xie, Q.L., Ma, S.W., Zhang, X.: Bound state solutions of Kirchhoff type problems with critical exponent. J. Differ. Equ. 261, 890–924 (2016)

    Article  MathSciNet  Google Scholar 

  35. Xie, Q.L., Yu, J.S.: Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Commun. Pure Appl. Anal. 18, 129–158 (2019)

    Article  MathSciNet  Google Scholar 

  36. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)

  37. Servadei, R., Valdinoci, E.: Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  38. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  39. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  40. Yang, Y., Wang, Y.L., Wang, Y.: Existence of solutions for critical Choquard problem with singular coefficients. arxiv Preprint.arXiv:1905.08401

  41. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis (Pure Applied and Mathematics). Wiley-Interscience Publications. Wiley, New York (1984)

Download references

Acknowledgements

Y. Sang is supported by the Programs for the Cultivation of Young Scientific Research Personnel of Higher Education Institutions in Shanxi Province, the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201802085), the Innovative Research Team of North University of China(TD201901) and Shanxi Scholarship Council of China (2021-107). S. Liang was supported by the Foundation for China Postdoctoral Science Foundation (Grant no. 2019M662220), Scientific research projects for Department of Education of Jilin Province, China (JJKH20210874KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Y., Liang, S. Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent. J Geom Anal 32, 5 (2022). https://doi.org/10.1007/s12220-021-00747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00747-5

Keywords

Mathematics Subject Classification

Navigation