Skip to main content
Log in

Nonlinear splittings on fibre bundles

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of a nonlinear splitting on a fibre bundle as a generalization of an Ehresmann connection. We present its basic properties and we pay attention to the special cases of affine, homogeneous and principal nonlinear splittings. We explain where nonlinear splittings appear in the context of Lagrangian systems and Finsler geometry and we show their relation to Routh symmetry reduction, submersive second-order differential equations and unreduction. We define a curvature map for a nonlinear splitting, and we indicate where this concept appears in the context of nonholonomic systems with affine constraints and Lagrangian systems of magnetic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data sharing statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings Publishing Co, San Francisco (1978)

    MATH  Google Scholar 

  2. Paiva, J.C.Á., Durán, C.E.: Isometric submersions of Finsler manifolds. Proc. Am. Math. Soc. 129, 2409–2417 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, New York (2000)

    Book  Google Scholar 

  4. Bloch A.M. with the collaboration of J. Baillieul, P. Crouch and J.E. Marsden, Nonholonomic mechanics and control. Springer (2003)

  5. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  Google Scholar 

  6. Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction by stages. Memoirs of the American Mathematics Society 152, x+108 (2001)

  7. Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Discrete Contin. Dynam. Syst. 24, 213–271 (2009)

    Article  MathSciNet  Google Scholar 

  8. Crampin, M., Mestdag, T.: Routh’s procedure for non-Abelian symmetry groups. J. Math. Phys. 49, 032901 (2008)

  9. Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  10. de León, M., Marrero, J.C., Martín de Diego, D.: Mechanical systems with nonlinear constraints. Int. J. Theor. Phys. 36, 979–995 (1997)

    Article  MathSciNet  Google Scholar 

  11. de Leon, M., Marrero, J.C., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A: Math. Gen. 38, R241 (2005)

    Article  MathSciNet  Google Scholar 

  12. de León, M., Rodrigues, P.R.: Methods of differential geometry in analytical mechanics. North Holland (1989)

  13. Fasso, F., Sansonetto, N.: Conservation of energy and momenta in nonholonomic systems with affine constraints. Regular Chaotic Dyn. 20, 449–462 (2015)

    Article  MathSciNet  Google Scholar 

  14. García-Toraño Andrés, E., Mestdag, T.: Un-reduction of systems of second-order ordinary differential equations. Symmetry Integrability and Geometry: Methods Appl. 12, 115–134 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Hajdú, S., Mestdag, T.: Homogeneous nonlinear splittings and Finsler submersions, preprint (2021), arXiv:2111.04411

  16. Huang, L.: Flag curvatures of homogeneous Finsler spaces. Eur. J. Math. 3, 1000–1029 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kolár̆, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, New York (1993)

  18. Kossowski, M., Thompson, G.: Submersive second-order ordinary differential equations. Math. Proc. Camb. Philos. Soc. 110, 207–224 (1991)

    Article  MathSciNet  Google Scholar 

  19. Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys. 38, 5098 (1997)

    Article  MathSciNet  Google Scholar 

  20. Langerock, B., López, M.C.: Routh reduction for singular Lagrangians. Int. J. Geom. Methods Mod. Phys. 8, 1451–1489 (2010)

    Article  MathSciNet  Google Scholar 

  21. Langerock, B., Mestdag, T., Vankerschaver, J.: Routh reduction by stages. Symmetry Integ. Geom.: Methods Appl. 7, 109 (2011)

  22. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2012)

    Book  Google Scholar 

  23. Mangiarotti, L., Sardanashvily, G.: Connections in Classical and Quantum Field Theory. World Scientific, Singapore (2000)

    Book  Google Scholar 

  24. Marrero, J.C., Padrón, E., Rodríguez-Olmos, M.: Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures. J. Phys. A: Math. Theor. 45, 165201 (2012)

  25. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1999)

    Book  Google Scholar 

  26. Marsden, J.E., Ratiu, T.S., Scheurle, J.: Reduction theory and the Lagrange-Routh equations. J. Math. Phys. 41, 3379 (2000)

    Article  MathSciNet  Google Scholar 

  27. Mestdag, T., Crampin, M.: Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations. J. Phys. A: Math. Theor. 41, 344015 (2008)

    Article  Google Scholar 

  28. Popescu, P., Popescu, M.: Lagrangians adapted to submersions and foliations. Differ. Geom. Appl. 27, 171–178 (2009)

    Article  MathSciNet  Google Scholar 

  29. Popescu, P., Popescu, M.: On Lagrange epimorphisms and Lagrange submersions. Balkan J. Geom. Appl. 5, 97–101 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen. 28, 3253 (1995)

    Article  MathSciNet  Google Scholar 

  31. Sarlet, W., Prince, G.E., Crampin, M.: Generalized submersiveness of second-order ordinary differential equations. J. Geom. Mech. 1, 209–221 (2009)

    Article  MathSciNet  Google Scholar 

  32. Szilasi, J., Lovas, R.L., Kertész, D.: Connections, Sprays and Finsler Functions. World Scientific, Singapore (2014)

  33. Vilms, J.: Connections on tangent bundles. J. Differ. Geom. 1, 235–243 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their valuable comments on the preprint version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mestdag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajdú, S., Mestdag, T. Nonlinear splittings on fibre bundles. Anal.Math.Phys. 12, 14 (2022). https://doi.org/10.1007/s13324-021-00622-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00622-0

Keywords

Navigation