Quantum data hiding with continuous-variable systems

Ludovico Lami
Phys. Rev. A 104, 052428 – Published 29 November 2021

Abstract

Suppose we want to benchmark a quantum device held by a remote party, e.g., by testing its ability to carry out challenging quantum measurements outside of a free set of measurements M. A very simple way to do so is to set up a binary-state discrimination task that cannot be solved efficiently by means of free measurements. If we can find pairs of orthogonal states that become arbitrarily indistinguishable under measurements in M, in the sense that the error probability in discrimination approaches that of a random guess, we say that there are data hiding against M. Here we investigate data hiding in the context of continuous-variable quantum systems. First, we look at the case where M denotes the set of measurements implementable with local operations and classical communication. While previous studies have placed upper bounds on the maximum efficiency of data hiding in terms of the local dimension and are thus not applicable to continuous-variable systems, we establish more general bounds that rely solely on the local mean photon number of the states employed. Along the way, we perform a rigorous quantitative analysis of the error introduced by the nonideal Braunstein-Kimble quantum teleportation protocol, determining how much squeezing and local detection efficiency are needed in order to teleport an arbitrary multimode local state of known mean energy with a prescribed accuracy. Finally, following a seminal proposal by Sabapathy and Winter, we look at data hiding against Gaussian operations assisted by the feedforward of measurement outcomes, providing an example of a relatively simple scheme that works with a single mode only.

  • Received 2 March 2021
  • Revised 12 October 2021
  • Accepted 21 October 2021

DOI:https://doi.org/10.1103/PhysRevA.104.052428

©2021 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Ludovico Lami*

  • Institut für Theoretische Physik and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany

  • *ludovico.lami@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 5 — November 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×