Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cortical interneurons in autism

Abstract

The mechanistic underpinnings of autism remain a subject of debate and controversy. Why do individuals with autism share an overlapping set of atypical behaviors and symptoms, despite having different genetic and environmental risk factors? A major challenge in developing new therapies for autism has been the inability to identify convergent neural phenotypes that could explain the common set of symptoms that result in the diagnosis. Although no striking macroscopic neuropathological changes have been identified in autism, there is growing evidence that inhibitory interneurons (INs) play an important role in its neural basis. In this Review, we evaluate and interpret this evidence, focusing on recent findings showing reduced density and activity of the parvalbumin class of INs. We discuss the need for additional studies that investigate how genes and the environment interact to change the developmental trajectory of INs, permanently altering their numbers, connectivity and circuit engagement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evidence of parvalbumin-expressing cell hypofunction in autism.
Fig. 2: Genes and environment affect milestones of brain development in autism.
Fig. 3: Birth, migration and fate of cortical interneurons.
Fig. 4: Shared phenotypes of parvalbumin cell hypofunction in rodent models of ASD.

Similar content being viewed by others

References

  1. Lombardo, M. V., Lai, M. C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 24, 1435–1450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iakoucheva, L. M., Muotri, A. R. & Sebat, J. Getting to the cores of autism. Cell 178, 1287–1298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belmonte, M. K. et al. Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hussman, J. P. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J. Autism Dev. Disord. 31, 247–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeste, S. S. & Tuchman, R. Autism spectrum disorder and epilepsy: two sides of the same coin? J. Child Neurol. 30, 1963–1971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pan, P. Y., Bolte, S., Kaur, P., Jamil, S. & Jonsson, U. Neurological disorders in autism: a systematic review and meta-analysis. Autism 25, 812–830 (2021).

    Article  PubMed  Google Scholar 

  8. O’Donnell, C., Goncalves, J. T., Portera-Cailliau, C. & Sejnowski, T. J. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders. Elife 6, e26724 (2017).

  9. Marin, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson, B. R. & Gao, W. J. PV Interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Filice, F., Janickova, L., Henzi, T., Bilella, A. & Schwaller, B. The parvalbumin hypothesis of autism spectrum disorder. Front. Cell. Neurosci. 14, 577525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lunden, J. W., Durens, M., Phillips, A. W. & Nestor, M. W. Cortical interneuron function in autism spectrum condition. Pediatr. Res 85, 146–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Rossignol, E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011, 649325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    Article  PubMed  Google Scholar 

  15. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haney, J. R. et al. Broad transcriptomic dysregulation across the cerebral cortex in ASD. Preprint at BioRxiv https://doi.org/10.1101/2020.12.17.423129 (2020).

  17. Williams, R. S., Hauser, S. L., Purpura, D. P., DeLong, G. R. & Swisher, C. N. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch. Neurol. 37, 749–753 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Markicevic, M. et al. Cortical excitation:inhibition imbalance causes abnormal brain network dynamics as observed in neurodevelopmental disorders. Cereb. Cortex 30, 4922–4937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E. & Roy, E. Minicolumnar pathology in autism. Neurology 58, 428–432 (2002).

    Article  PubMed  Google Scholar 

  20. Wegiel, J. et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 119, 755–770 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Varghese, M. et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 134, 537–566 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hutsler, J. J. & Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol. 77, 393–404 (2017).

    Article  PubMed  Google Scholar 

  24. Fatemi, S. H., Reutiman, T. J., Folsom, T. D. & Thuras, P. D. GABAA receptor downregulation in brains of subjects with autism. J. Autism Dev. Disord. 39, 223–230 (2009).

    Article  PubMed  Google Scholar 

  25. Blatt, G. J. et al. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism Dev. Disord. 31, 537–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Robertson, C. E., Ratai, E. M. & Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol. 26, 80–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Horder, J. et al. GABAA receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Sci. Transl. Med. 10, eaam8434 (2018).

  28. Palmen, S. J., van Engeland, H., Hof, P. R. & Schmitz, C. Neuropathological findings in autism. Brain 127, 2572–2583 (2004).

    Article  PubMed  Google Scholar 

  29. Lawrence, Y. A., Kemper, T. L., Bauman, M. L. & Blatt, G. J. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol. Scand. 121, 99–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Hashemi, E., Ariza, J., Rogers, H., Noctor, S. C. & Martinez-Cerdeño, V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb. Cortex 27, 1931–1943 (2017).

    PubMed  Google Scholar 

  31. Ariza, J., Rogers, H., Hashemi, E., Noctor, S. C. & Martinez-Cerdeño, V. The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cereb. Cortex 28, 411–420 (2018).

    Article  PubMed  Google Scholar 

  32. Li, X. G., Somogyi, P., Tepper, J. M. & Buzsaki, G. Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp. Brain Res. 90, 519–525 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1, 172–181 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Canetta, S. et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol. Psychiatry 21, 956–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Godavarthi, S. K., Sharma, A. & Jana, N. R. Reversal of reduced parvalbumin neurons in hippocampus and amygdala of Angelman syndrome model mice by chronic treatment of fluoxetine. J. Neurochem. 130, 444–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Z. et al. Accumulated quiescent neural stem cells in adult hippocampus of the mouse model for the MECP2 duplication syndrome. Sci. Rep. 7, 41701 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Selby, L., Zhang, C. & Sun, Q. Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the Fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Wen, T. H. et al. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb. Cortex 28, 3951–3964 (2018).

    Article  PubMed  Google Scholar 

  39. Filice, F., Vorckel, K. J., Sungur, A. O., Wohr, M. & Schwaller, B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol. Brain 9, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lauber, E., Filice, F. & Schwaller, B. Dysregulation of parvalbumin expression in the Cntnap2/− mouse model of autism spectrum disorder. Front Mol. Neurosci. 11, 262 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Penagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffman, E. J. et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron 89, 725–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott, R. et al. Loss of Cntnap2 causes axonal excitability deficits, developmental delay in cortical myelination, and abnormal stereotyped motor behavior. Cereb. Cortex 29, 586–597 (2019).

    Article  PubMed  Google Scholar 

  44. Smith, C. J. et al. Neonatal immune challenge induces female-specific changes in social behavior and somatostatin cell number. Brain Behav. Immun. 90, 332–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vogt, D., Cho, K. K. A., Lee, A. T., Sohal, V. S. & Rubenstein, J. L. R. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 11, 944–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lim, L., Mi, D., Llorca, A. & Marin, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paluszkiewicz, S. M., Olmos-Serrano, J. L., Corbin, J. G. & Huntsman, M. M. Impaired inhibitory control of cortical synchronization in Fragile X syndrome. J. Neurophysiol. 106, 2264–2272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong, F. K. & Marin, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Biol. 35, 523–542 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Denaxa, M. et al. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep. 22, 1710–1721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Golshani, P. et al. Internally mediated developmental desynchronization of neocortical network activity. J. Neurosci. 29, 10890–10899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duan, Z. R. S. et al. GABAergic restriction of network dynamics regulates interneuron survival in the developing cortex. Neuron 105, 75–92 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. del Rio, J. A., de Lecea, L., Ferrer, I. & Soriano, E. The development of parvalbumin-immunoreactivity in the neocortex of the mouse. Brain Res. Dev. Brain Res. 81, 247–259 (1994).

    Article  PubMed  Google Scholar 

  56. Priya, R. et al. Activity regulates cell death within cortical interneurons through a calcineurin-dependent mechanism. Cell Rep. 22, 1695–1709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marin, O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat. Med. 22, 1229–1238 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Nomura, T. et al. Delayed maturation of fast-spiking interneurons is rectified by activation of the TrkB receptor in the mouse model of Fragile X syndrome. J. Neurosci. 37, 11298–11310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petilla Interneuron Nomenclature Group, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  Google Scholar 

  60. de Wit, J. & Ghosh, A. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17, 22–35 (2016).

    PubMed  Google Scholar 

  61. Polepalli, J. S. et al. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. Nat. Neurosci. 20, 219–229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Favuzzi, E. & Rico, B. Molecular diversity underlying cortical excitatory and inhibitory synapse development. Curr. Opin. Neurobiol. 53, 8–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Favuzzi, E. et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 363, 413–417 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Fazzari, P. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–1380 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Exposito-Alonso, D. et al. Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits. Elife 9, e57000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Helt, M. et al. Can children with autism recover? If so, how? Neuropsychol. Rev. 18, 339–366 (2008).

    Article  PubMed  Google Scholar 

  71. Shattuck, P. T. et al. Change in autism symptoms and maladaptive behaviors in adolescents and adults with an autism spectrum disorder. J. Autism Dev. Disord. 37, 1735–1747 (2007).

    Article  PubMed  Google Scholar 

  72. Gouwens, N. W. et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183, 935–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single-cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, H. et al. Loss and gain of MeCP2 cause similar hippocampal circuit dysfunction that is rescued by deep brain stimulation in a Rett syndrome mouse model. Neuron 91, 739–747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goncalves, J. T., Anstey, J. E., Golshani, P. & Portera-Cailliau, C. Circuit-level defects in the developing neocortex of Fragile X mice. Nat. Neurosci. 16, 903–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. La Fata, G. et al. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat. Neurosci. 17, 1693–1700 (2014).

    Article  PubMed  Google Scholar 

  78. Cheyne, J. E., Zabouri, N., Baddeley, D. & Lohmann, C. Spontaneous activity patterns are altered in the developing visual cortex of the Fmr1 knockout mouse. Front. Neural Circuits 13, 57 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, N. et al. Decreased surface expression of the delta subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of Fragile X syndrome. Exp. Neurol. 297, 168–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. El Idrissi, A. et al. Decreased GABAA receptor expression in the seizure-prone Fragile X mouse. Neurosci. Lett. 377, 141–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Tyzio, R. et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. He, Q., Nomura, T., Xu, J. & Contractor, A. The developmental switch in GABA polarity is delayed in Fragile X mice. J. Neurosci. 34, 446–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in Fragile X syndrome. Neuron 87, 699–715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, Y. et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat. Neurosci. 17, 1701–1709 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Rotschafer, S. & Razak, K. Altered auditory processing in a mouse model of Fragile X syndrome. Brain Res. 1506, 12–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Gibson, J. R., Bartley, A. F., Hays, S. A. & Huber, K. M. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of Fragile X syndrome. J. Neurophysiol. 100, 2615–2626 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen, Q. et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat. Neurosci. 23, 520–532 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wallace, M. L., Burette, A. C., Weinberg, R. J. & Philpot, B. D. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron-type-specific synaptic defects. Neuron 74, 793–800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Robertson, C. E. & Baron-Cohen, S. Sensory perception in autism. Nat. Rev. Neurosci. 18, 671–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Antoine, M. W., Langberg, T., Schnepel, P. & Feldman, D. E. Increased excitation–inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. Neuron 101, 648–661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Michaelson, S. D. et al. SYNGAP1 heterozygosity disrupts sensory processing by reducing touch-related activity within somatosensory cortex circuits. Nat. Neurosci. 21, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rolls, E. T. & Mills, W. P. C. Computations in the deep vs superficial layers of the cerebral cortex. Neurobiol. Learn. Mem. 145, 205–221 (2017).

    Article  PubMed  Google Scholar 

  93. He, C. X. et al. Tactile defensiveness and impaired adaptation of neuronal activity in the Fmr1 knock-out mouse model of autism. J. Neurosci. 37, 6475–6487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lovelace, J. W. et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X syndrome. Neurobiol. Dis. 89, 126–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Green, S. A. et al. Neurobiology of sensory overresponsivity in youth with autism spectrum disorders. JAMA Psychiatry 72, 778–786 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pi, H. J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Goel, A. et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat. Neurosci. 21, 1404–1411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buzsaki, G. & Wang, X. J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35, 203–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grice, S. J. et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport 12, 2697–2700 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Gandal, M. J. et al. Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biol. Psychiatry 68, 1100–1106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wilkinson, C. L., Levin, A. R., Gabard-Durnam, L. J., Tager-Flusberg, H. & Nelson, C. A. Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Res. 12, 1211–1224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ethridge, L. E. et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in Fragile X syndrome. Mol. Autism 8, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Veit, J., Hakim, R., Jadi, M. P., Sejnowski, T. J. & Adesnik, H. Cortical gamma band synchronization through somatostatin interneurons. Nat. Neurosci. 20, 951–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guyon, N. et al. Network asynchrony underlying increased broadband gamma power. J. Neurosci. 41, 2944–2963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lovelace, J. W., Ethell, I. M., Binder, D. K. & Razak, K. A. Translation-relevant EEG phenotypes in a mouse model of Fragile X syndrome. Neurobiol. Dis. 115, 39–48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kissinger, S. T. et al. Visual experience-dependent oscillations and underlying circuit connectivity changes are impaired in Fmr1 KO mice. Cell Rep. 31, 107486 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pirbhoy, P. S. et al. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J. Neurochem. 155, 538–558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Radwan, B., Dvorak, D. & Fenton, A. A. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol. Dis. 88, 125–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Talbot, Z. N. et al. Normal CA1 place fields but discoordinated network discharge in a Fmr1-null mouse model of Fragile X syndrome. Neuron 97, 684–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mukherjee, A., Carvalho, F., Eliez, S. & Caroni, P. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell 178, 1387–1402 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Cheaha, D. & Kumarnsit, E. Alteration of spontaneous spectral powers and coherences of local field potential in prenatal valproic acid mouse model of autism. Acta Neurobiol. Exp. 75, 351–363 (2015).

    Google Scholar 

  116. Berzhanskaya, J., Phillips, M. A., Shen, J. & Colonnese, M. T. Sensory hypo-excitability in a rat model of fetal development in Fragile X syndrome. Sci. Rep. 6, 30769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marissal, T. et al. Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat. Neurosci. 21, 1412–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9, eaah6733 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kozono, N., Okamura, A., Honda, S., Matsumoto, M. & Mihara, T. Gamma power abnormalities in a Fmr1-targeted transgenic rat model of Fragile X syndrome. Sci. Rep. 10, 18799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wohr, M. et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl. Psychiatry 5, e525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Deng, X., Gu, L., Sui, N., Guo, J. & Liang, J. Parvalbumin interneuron in the ventral hippocampus functions as a discriminator in social memory. Proc. Natl Acad. Sci. USA 116, 16583–16592 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kang, Y. et al. A human forebrain organoid model of Fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Donegan, J. J., Boley, A. M. & Lodge, D. J. Embryonic stem cell transplants as a therapeutic strategy in a rodent model of autism. Neuropsychopharmacology 43, 1789–1798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Banerjee, A. et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. Proc. Natl Acad. Sci. USA 113, E7287–E7296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Krishnan, K. et al. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc. Natl Acad. Sci. USA 112, E4782–E4791 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lazaro, M. T. et al. Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Rep. 27, 2567–2578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rotaru, D. C., van Woerden, G. M., Wallaard, I. & Elgersma, Y. Adult Ube3a gene reinstatement restores the electrophysiological deficits of prefrontal cortex layer 5 neurons in a mouse model of Angelman syndrome. J. Neurosci. 38, 8011–8030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mao, W. et al. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons. Eur. J. Neurosci. 41, 1025–1035 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Berryer, M. H. et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat. Commun. 7, 13340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Codagnone, M. G. et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol. Psychiatry 85, 150–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Azhari, A., Azizan, F. & Esposito, G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev. Psychobiol. 61, 752–771 (2019).

    Article  PubMed  Google Scholar 

  136. Han, V. X. et al. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Transl. Psychiatry 11, 71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  PubMed  Google Scholar 

  139. Vasistha, N. A. et al. Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Mol. Psychiatry 25, 2313–2329 (2020).

    Article  PubMed  Google Scholar 

  140. Donato, F., Rompani, S. B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349, 1216–1220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo, J. & Anton, E. S. Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol. 24, 342–351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oskvig, D. B., Elkahloun, A. G., Johnson, K. R., Phillips, T. M. & Herkenham, M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav. Immun. 26, 623–634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Su, P. et al. Disruption of SynGAP–dopamine D1 receptor complexes alters actin and microtubule dynamics and impairs GABAergic interneuron migration. Sci. Signal 12, eaau9122 (2019).

    Article  PubMed  Google Scholar 

  145. Ruden, J. B., Dugan, L. L. & Konradi, C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 46, 279–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Itami, C., Kimura, F. & Nakamura, S. Brain-derived neurotrophic factor regulates the maturation of layer 4 fast-spiking cells after the second postnatal week in the developing barrel cortex. J. Neurosci. 27, 2241–2252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hampson, D. R., Hooper, A. W. M. & Niibori, Y. The application of adeno-associated viral vector gene therapy to the treatment of Fragile X syndrome. Brain Sci. 9, 32 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  148. Mossner, J. M., Batista-Brito, R., Pant, R. & Cardin, J. A. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. Elife 9, e55639 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lovelace, J. W. et al. Deletion of Fmr1 from forebrain excitatory neurons triggers abnormal cellular, EEG, and behavioral phenotypes in the auditory cortex of a mouse model of Fragile X syndrome. Cereb. Cortex 30, 969–988 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was inspired by the presentations of experts in the field during a three-day virtual conference entitled Interneurons Dysfunction in Autism held on 16–18 November 2020 (https://sites.google.com/view/interneurons-in-autism-2020/). The keynote speakers were J. Cardin, N. De Marco García, D. Feldman, A. Fenton, G. Fishell, M. Gandal, A. Goel, N. Gouwens, F. Krienen, V. M. Cerdeño, C. McBain and B. Rico. We are grateful to the speakers and all participants for their ideas. We also thank B. Rico, M. Gandal and C. McBain, as well as N. Kourdougli, A. Suresh, S. Sutley and M. Rais for their comments on this manuscript and help with the figures. This research is supported by grant 20160969 from The John Merck Fund to C.P.-C. and A.C., grants R01 HD054453 (National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)) and R01 NS117597 (National Institute of Mental Health (NIMH)/NIH) and Simons Foundation Autism Research Initiative (SFARI) award no. 513155 to C.P.-C., grants R01 MH099114 (NIMH/NIH), R01 NS105502 (National Institute of Neurological Disorders and Stroke (NINDS)/NIH) and SFARI Pilot Award to A.C., grants W81XWH-17-1-0231 and WX81XWH-18-1-0777 from the US Army Medical Research and Materiel Command (Department of Defense) to A.C. and C.P.-C. and grant W81XWH-15-1-0436 from the Department of Defense to I.M.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Portera-Cailliau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Elsa Rossignol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contractor, A., Ethell, I.M. & Portera-Cailliau, C. Cortical interneurons in autism. Nat Neurosci 24, 1648–1659 (2021). https://doi.org/10.1038/s41593-021-00967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-021-00967-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing