Skip to main content
Log in

Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethy-lammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L · m−2 · h−1 · bar−1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mi Y F, Zhao F Y, Guo Y S, Weng X D, Ye C C, An Q F. Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. Journal of Membrane Science, 2017, 541: 29–38

    Article  CAS  Google Scholar 

  2. Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): 1–6

    Article  Google Scholar 

  3. Lively R P, Sholl D S. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

    Article  PubMed  Google Scholar 

  4. Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018

    CAS  Google Scholar 

  5. Paul M, Jons S D. Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer, 2016, 103: 417–456

    Article  CAS  Google Scholar 

  6. Santanu K, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348(6241): 1347–1352

    Article  Google Scholar 

  7. Dizgea N, Epsztein R, Cheng W, Porter C J, Elimelech M. Biocatalytic and salt selective multilayer polyelectrolyte nanofiltration membrane. Journal of Membrane Science, 2018, 549: 357–365

    Article  Google Scholar 

  8. Tan Z, Chen S F, Peng X S, Zhang L, Gao C J. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521

    Article  CAS  PubMed  Google Scholar 

  9. Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination, 2015, 356: 2226–2254

    Article  Google Scholar 

  10. Wang Z, Wang Z X, Lin S H, Jin H L, Gao S J, Zhu Y Z, Jin J. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9(1): 2004

    Article  PubMed  PubMed Central  Google Scholar 

  11. You X D, Wu H, Zhang R N, Su Y L, Cao L, Yu Q Q, Yuan J Q, Xiao K, He M R, Jiang Z Y. Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10(1): 4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin Z, Zhang Q G, Qu Y, Chen M M, Soyekwo F, Lin C X, Zhu A, Liu Q L. LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14819–14827

    Article  CAS  Google Scholar 

  13. Zhang W H, Yin M, Zhao Q, Jin C G, Wang N, Ji S, Ritt C L, Elimelech M, An Q F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 2021, 16(3): 337–343

    Article  PubMed  Google Scholar 

  14. Zhang Y Q, Cheng X Q, Urban J J, Lau C H, Liu S Q, Shao L. Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36: 40–47

    Article  CAS  Google Scholar 

  15. Liu J T, Han G, Zhao D L, Lu Ka J, Gao J, Chung T S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6(41): eabb1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y Q, Guo J, Han G, Bai Y P, Ge Q C, Ma J, Lau C H, Shao L. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): eabe8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J F, Liu Y Y, Fan Z M, Wang W, Wang B, Guo Z H. Ink-based 3D printing technologies for graphene-based materials: a review. Advanced Composites and Hybrid Materials, 2019, 2(1): 1–33

    Article  Google Scholar 

  18. Gu J E, Lee S, Stafford C M, Lee J S, Choi W, Kim B Y, Baek K Y, Chan E P, Chung J Y, Bang J, Lee J H. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Advanced Materials, 2013, 25(34): 4778–4782

    Article  CAS  PubMed  Google Scholar 

  19. Richardson J J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348(6233): aaa2491

    Article  PubMed  Google Scholar 

  20. Shubin V, Linse P. Self-consistent-field modeling of polyelectrolyte adsorption on charge-regulating surfaces. Macromolecules, 1997, 30(19): 5944–5952

    Article  CAS  Google Scholar 

  21. Ng L Y A, Mohammad W, Ng C Y, Leo C P, Rohani R. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination, 2014, 351: 19–26

    Article  CAS  Google Scholar 

  22. Klitzing R V. Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 2006, 8(43): 5012–5033

    Article  Google Scholar 

  23. Dubas S T, Schlenoff J B. Factors controlling the growth of polyelectrolyte multilayers. Macromolecules, 1999, 32(24): 8153–8160

    Article  CAS  Google Scholar 

  24. Deng H Y, Xu Y Y, Zhu B K, Wei X Z, Liu F, Cui Z Y. Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). Journal of Membrane Science, 2008, 323(1): 125–133

    Article  CAS  Google Scholar 

  25. Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33(11): 4213–4219

    Article  CAS  Google Scholar 

  26. Bieker P, Schönhoff M. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules, 2010, 43(11): 5052–5059

    Article  CAS  Google Scholar 

  27. Salomäki M, Vinokurov I A, Kankare J. Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir, 2005, 21(24): 11232–11240

    Article  PubMed  Google Scholar 

  28. Tan H L, McMurdo M J, Pan G, Van Patten P G. Temperature dependence of polyelectrolyte multilayer assembly. Langmuir, 2003, 19(22): 9311–9314

    Article  CAS  Google Scholar 

  29. Bruening M L, Dotzauer D M, Jain P, Ouyang L, Baker G L. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir, 2008, 24(15): 7663–7673

    Article  CAS  PubMed  Google Scholar 

  30. Richardson J J, Cui J, Björnmalm M, Braunger J A, Ejima H, Caruso F. Innovation in layer-by-layer assembly. Chemical Reviews, 2016, 116(23): 14828–14867

    Article  CAS  PubMed  Google Scholar 

  31. Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science, 2013, 197–198: 85–107

    Article  PubMed  Google Scholar 

  32. Cheng C, Yaroshchuk A, Bruening M L. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes. Langmuir, 2013, 29(6): 1885–1892

    Article  CAS  PubMed  Google Scholar 

  33. Grooth J D, Oborný R, Potreck J, Nijmeijer K, de Vos W M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. Journal of Membrane Science, 2015, 475: 311–319

    Article  Google Scholar 

  34. Joseph N, Ahmadiannamini P, Hoogenboom R, Vankelecom I F J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polymer Chemistry, 2014, 5(6): 1817–1831

    Article  CAS  Google Scholar 

  35. Schlenoff J B, Dubas S T. Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules, 2001, 34(3): 592–598

    Article  CAS  Google Scholar 

  36. Li X, Goyens W, Ahmadiannamini P, Vanderlinden W, Feyter S D, Vankelecom I. Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes: study of preparation conditions. Journal of Membrane Science, 2010, 358(1–2): 150–157

    Article  CAS  Google Scholar 

  37. DuChanois R M, Epsztein R, Trivedi J A, Elimelech M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. Journal of Membrane Science, 2019, 581: 413–420

    Article  CAS  Google Scholar 

  38. Joseph N, Thomas J, Ahmadiannamini P, Gorp H V, Bernstein R, Feyter S D, Smet M, Dehaen W, Hoogenboom R, Vankelecom I F J. Ultrathin single bilayer separation membranes based on hyper-branched sulfonated poly(aryleneoxindole). Advanced Functional Materials, 2017, 27(9): 1605068

    Article  Google Scholar 

  39. Joseph N, Ahmadiannamini P, Jishna P S, Volodin A, Vankelecom I F J. ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. Journal of Membrane Science, 2015, 492: 271–280

    Article  CAS  Google Scholar 

  40. Scheepers D, Chatillon B, Borneman Z, Nijmeijer K. Influence of charge density and ionic strength on diallyldimethylammonium chloride (DADMAC)-based polyelectrolyte multilayer membrane formation. Journal of Membrane Science, 2021, 617: 118619

    Article  CAS  Google Scholar 

  41. Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559: 98–106

    Article  CAS  Google Scholar 

  42. Önder T, Sacide A A. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. Journal of Colloid and Interface Science, 2019, 537: 215–227

    Article  Google Scholar 

  43. Shi X S, Wang R, Xiao A K, Jia T Z, Sun S P, Wang Y. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations. ACS Applied Nano Materials, 2018, 1(11): 6320–6326

    Article  CAS  Google Scholar 

  44. Ahmad N A, Goh P S, Wong K C, Zulhairun A K, Ismail A F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination, 2020, 476: 114167

    Article  Google Scholar 

  45. Cao Y, Zhang H R, Guo S W, Luo J Q, Wan Y H. A roust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. Journal of Membrane Science, 2021, 629: 119287

    Article  CAS  Google Scholar 

  46. Wang N X, Ji S L, Zhang G J, Li J, Wang L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Journal of Membrane Science, 2012, 213: 318–329

    CAS  Google Scholar 

  47. Yang L B, Wang Z, Zhang J L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 29(5): 15342–15355

    Article  Google Scholar 

  48. Tan L, Gong L, Wang S Y, Zhu Y Z, Zhang F, Zhang Y T, Jin J. Superhydrophilic sub-1-nm porous membrane with electroneutral surface for nonselective transport of small organic molecules. ACS Applied Materials & Interfaces, 2020, 12(34): 38778–38787

    Article  CAS  Google Scholar 

  49. Gong Y Q, Gao S J, Tian Y Y, Zhu Y Z, Fang W X, Wang Z G, Jin J. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination. Journal of Membrane Science, 2020, 600: 117874

    Article  CAS  Google Scholar 

  50. Epsztein R, Shaulsky E, Dizge N, Warsinger D M, Elimelech M. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environmental Science & Technology, 2018, 52(7): 4108–4116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project (Grant Nos. 2019YFC1711300 and 2019YFA0705800), the National Natural Science Funds for Distinguished Young Scholar (Grant No. 51625306), the National Natural Science Foundation of China (Grant Nos. 21988102 and 51873230), the Social Development Program of Jiangsu Province (Grant No. BE2019678).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Jian Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Tan, L., Gong, L. et al. Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration. Front. Chem. Sci. Eng. 16, 699–708 (2022). https://doi.org/10.1007/s11705-021-2093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2093-3

Keywords

Navigation