Skip to main content
Log in

Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO2 surface revealed the dye adsorption rate of −CH=CH-COOH (SQ-139) > −CH=C(CN)COOH (SQ-140) > −PO3H2 (SQ-143) > −CH=C(CN)PO3H2 (SQ-148) > −CH=C(CN) PO3H-C2H5 (SQ-157) > −PO3H-C2H5 (SQ-151) > −CH=CH-COOH(−PO3H2) (SQ-162). The binding strength of these dyes on mesoporous TiO2 as investigated by dye desorption studies follows SQ-162 > SQ-143 > SQ-148 > SQ-139 ≫ SQ-157∼SQ-151 ≫ SQ-140 order. The acrylic acid anchoring group was demonstrated to be an optimum functional group owing to its fast dye adsorption rate and better binding strength on TiO2 along with good photoconversion efficiency. Results of dye binding on TiO2 surface demonstrated that SQ-162 bearing double anchoring groups of phosphonic and acrylic acid exhibited > 550 times stronger binding as compared to dye SQ-140 having cyanoacrylic acid anchoring group. SQ-140 exhibited the best photovoltaic performance with photon harvesting mainly in the far-red to near-infrared wavelength region having short circuit current density, open-circuit voltage and fill factor of 14.28 mA·cm−2, 0.64 V and 0.65, respectively, giving the power conversion efficiency of 5.95%. Thus, dye SQ-162 not only solved the problem of very poor efficiency of dye bearing only phosphonic acid while maintaining the extremely high binding strength opening the path for the design and development of novel near-infrared dyes with improved efficiency and stability by further increasing the π-conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems—the case of Denmark in years 2030 and 2050. Energy, 2009, 34(5): 524–531

    Article  Google Scholar 

  2. Omer A M, Agric J. Environmental and socio-economic aspects of possible development in renewable energy use. Journal of Agricultural Extension and Rural Development, 2010, 2: 1–21

    Google Scholar 

  3. Voudoukis N F. Design, description, implementation, and assessment of a multimedia application with simulations for teaching models of light. European Journal of Electrical and Computer Engineering, 2018, 2(7): 13

    Google Scholar 

  4. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin S M, Moser J E, Grätzel M, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017, 11(6): 372–378

    Article  CAS  Google Scholar 

  5. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  6. Ahmad M S, Pandey A K, Rahim N A. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye-sensitized solar cell (DSSC) applications. A review. Renewable & Sustainable Energy Reviews, 2017, 77: 89–108

    Article  CAS  Google Scholar 

  7. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G. Electrolytes in dye-sensitized solar cells. Chemical Reviews, 2015, 115(5): 2136–2173

    Article  CAS  PubMed  Google Scholar 

  8. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y. Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017, 46(19): 5975–6023

    Article  CAS  PubMed  Google Scholar 

  9. Eom K Y, Kang S H, Choi I T, Yoo Y J, Kim J H, Kim H K. Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothio-phene to thieno[3,2-b]indole for high performance dye sensitized and tandem solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(5): 2297–2308

    Article  CAS  Google Scholar 

  10. Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–633

    Article  CAS  PubMed  Google Scholar 

  11. Kakiage K, Aoyama Y, Yano T, Otsuka T, Kyomen T, Unno M, Hanaya M. An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chemical Communications, 2014, 50(48): 6379–6381

    Article  CAS  PubMed  Google Scholar 

  12. Ji J M, Zhou H, Yu K E, Kim C H, Kim H K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Advanced Energy Materials, 2020, 15(15): 2000124

    Article  CAS  Google Scholar 

  13. Mathew S, Yella A, Gao P, Baker R H, Curchod B F E, Astani N A, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6(3): 242–247

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Yang X, Wang W, Gurzadyan G G, Li J, Li X, An J, Yu Z, Wang H, Cai B, et al. 13.6% efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Letters, 2019, 4(4): 943–951

    Article  CAS  Google Scholar 

  15. Kang S H, Jeong M J, Eom Y K, Choi I T, Kwon S M, Yoo Y J, Kim J H, Kwon J, Park J H, Kim H K. Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications. Advanced Energy Materials, 2017, 7(7): 1072117

    Article  CAS  Google Scholar 

  16. Pradhan A, Kiran M S, Kapil G, Hayase S, Pandey S S. Wide wavelength photon harvesting in dye-sensitized solar cells utilizing cobalt complex redox electrolyte: implication of surface passivation. Solar Energy Materials and Solar Cells, 2019, 195: 122–133

    Article  CAS  Google Scholar 

  17. Baranwal A K, Shiki T, Ogomi Y, Pandey S S, Ma T, Hayase S. Tandem dye-sensitized solar cells with a back-contact bottom electrode without a transparent conductive oxide layer. RSC Advances, 2014, 4(88): 47735–47742

    Article  CAS  Google Scholar 

  18. Shivashimpi G M, Pandey S S, Watanabe R, Fujikawa N, Ogomi Y, Yamaguchi Y, Hayase S. Efficient far-red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. Journal of Photochemistry and Photobiology A Chemistry, 2014, 273: 1–7

    Article  CAS  Google Scholar 

  19. Murakami T N, Yoshida E, Koumura N. Carbazole dye with phosphonic acid anchoring groups for long-term heat stability of dye-sensitized solar cells. Electrochimica Acta, 2014, 131: 174–183

    Article  CAS  Google Scholar 

  20. Zhang L, Cole J M. Anchoring groups for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(6): 3427–3455

    Article  CAS  Google Scholar 

  21. Brennan B J, Portole’s M J L, Liddell P A, Moore T A, Moore A L, Gust D. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Physical Chemistry Chemical Physics, 2013, 15(39): 16605–16614

    Article  CAS  PubMed  Google Scholar 

  22. Hanson K, Brennaman M K, Luo H, Glasson C R K, Concepcion J J, Song W, Meyer T J. Photostability of phosphonate-derivatized, Ru(II) polypyridyl complexes on metal oxide surfaces. ACS Applied Materials & Interfaces, 2012, 4(3): 1462–1469

    Article  CAS  Google Scholar 

  23. Kakiage K, Yamamura M, Fujimura E, Kyomen T, Unno M, Hanaya M. High performance of Si-O-Ti bonds for anchoring sensitizing dyes on TiO2 electrodes in dye-sensitized solar cells evidenced by using alkoxysilylazobenzenes. Chemistry Letters, 2010, 39(3): 260–262

    Article  CAS  Google Scholar 

  24. Higashino T, Nimura S, Sugiura K, Kurumisawa Y, Tsuji Y, Imahori H. Photovoltaic properties and long-term durability of porphyrin-sensitized solar cells with silicon-based anchoring groups. ACS Omega, 2017, 2(10): 6958–6967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vats A K, Pradhan A, Hayase S, Pandey S S. Synthesis, photophysical characterization and dye adsorption behaviour in unsymmetrical squaraine dyes with varying anchoring groups. Journal of Photochemistry and Photobiology A Chemistry, 2020, 394: 112467

    Article  CAS  Google Scholar 

  26. Baktash A, Khoshnevisan B, Sasani A, Mirabbaszadeh K. Effects of carboxylic acid and phosphonic acid anchoring groups on the efficiency of dye sensitized solar cells: a computational study. Organic Electronics, 2016, 33: 207–212

    Article  CAS  Google Scholar 

  27. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A D J, et al. Gaussian 09. Revision A.02, Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  28. Shivashimpi G M, Pandey S S, Watanabe R, Fujikawa N, Ogomi Y, Yamaguchi Y, Hayase S. Novel unsymmetrical squaraine dye bearing cyanoacrylic acid anchoring group and its photosensitization behavior. Tetrahedron Letters, 2012, 53(40): 5437–5440

    Article  CAS  Google Scholar 

  29. Li J, Chen C Y, Ho W C, Chen S H, Wu C G. Unsymmetrical squaraines incorporating quinoline for near-infrared responsive dye-sensitized solar cells. Organic Letters, 2012, 14(21): 5420–5423

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y H, Qi L W, Fang F, Tan B. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols. Angewandte Chemie, 2017, 56(51): 16308–16312

    Article  CAS  PubMed  Google Scholar 

  31. Brown D G, Schauer P A, Garcia J B, Fancy B R, Berlinguette C P. Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups. Journal of the American Chemical Society, 2013, 135(5): 1692–1695

    Article  CAS  PubMed  Google Scholar 

  32. Yum J H, Moon S J, Baker R H, Walter P, Geiger T, Nüesch F, Grätzel M, Nazeeruddin M K. Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells. Nanotechnology, 2008, 19(42): 424005

    Article  CAS  PubMed  Google Scholar 

  33. Shivashimpi G M, Pandey S S, Hayat A, Fujikawa N, Ogomi Y, Yamaguchi Y, Hayase S. Far-red sensitizing octatrifluorobutoxy phosphorous triazatetrabenzocorrole: synthesis, spectral characterization, and aggregation studies. Journal of Photochemistry and Photobiology A Chemistry, 2014, 289: 53–59

    Article  CAS  Google Scholar 

  34. Ren T B, Xu W, Zhang W, Zhang X X, Wang Z Y, Xiang Z, Yuan L, Zhang X B. A general method to increase stokes shift by introducing alternating vibronic structures. Journal of the American Chemical Society, 2018, 140(24): 7716–7722

    Article  CAS  PubMed  Google Scholar 

  35. Inoue T, Pandey S S, Fujikawa N, Yamaguchi Y, Hayase S. Synthesis and characterization of squaric acid-based NIR dyes for their application towards dye-sensitized solar cells. Journal of Photochemistry and Photobiology A Chemistry, 2010, 213(1): 23–29

    Article  CAS  Google Scholar 

  36. Li L, Xie Z X, Wang Y L. Wang, Xu H, Xu T M, Zhang Z G, Zhang H L. Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification. Journal of Photochemistry and Photobiology A Chemistry, 2011, 224(1): 25–30

    Article  CAS  Google Scholar 

  37. Ogomi Y, Kato T, Hayase S. Dye-sensitized solar cells consisting of ionic liquid and solidification. Journal of Photopolymer Science and Technology, 2006, 19(3): 403–408

    Article  CAS  Google Scholar 

  38. Pastore M, Fantacci S, Angelis F D. Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. Journal of Physical Chemistry C, 2013, 117(8): 3685–3700

    Article  CAS  Google Scholar 

  39. Nazeeruddin M K, Angelis F D, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005, 127(48): 16835–16847

    Article  CAS  PubMed  Google Scholar 

  40. Improta R, Barone V, Scalmani G, Frisch M J. A state-specific polarizable continuum model time-dependent density functional theory method for excited-state calculations in solution. Journal of Chemical Physics, 2006, 125(5): 054103

    Article  PubMed  CAS  Google Scholar 

  41. Pandey S S, Morimoto T, Fujikawa N, Hayase S. Combined theoretical and experimental approaches for the development of squaraine dyes with small energy barrier for electron injection. Solar Energy Materials and Solar Cells, 2017, 159: 625–632

    Article  CAS  Google Scholar 

  42. Pradhan A, Morimoto T, Saikiran M, Kapil G, Hayase S, Pandey S S. Investigation of the minimum driving force for dye regeneration utilizing model squaraine dyes for dye-sensitized solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22672–22682

    Article  CAS  Google Scholar 

  43. Park H, Bae E, Lee J J, Park J, Choi W. Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. Journal of Physical Chemistry B, 2006, 110(17): 8740–8749

    Article  CAS  PubMed  Google Scholar 

  44. Johansson V, Gibbings L E, Clarke T, Gorlov M, Andersson G G, Kloo L. On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. Journal of the Chemical Society, Faraday Transactions, 2014, 16: 711–718

    CAS  Google Scholar 

  45. Khazraji A C, Hotchandani S, Das S, Kamat P V. Controlling dye (merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. Journal of Physical Chemistry B, 1999, 103(22): 4693–4700

    Article  CAS  Google Scholar 

  46. Nazeeruddin M K, Baker R H, Liska P, Grätzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. Journal of Physical Chemistry B, 2003, 107(34): 8981–8987

    Article  CAS  Google Scholar 

  47. Kawano M, Nishiyama T, Ogomi Y, Pandey S S, Ma T, Hayase S. Relationship between diffusion of Co3+/Co2+ redox species in nanopores of porous titania stained with dye molecules, dye molecular structures, and photovoltaic performances. RSC Advances, 2015, 5(102): 83725–83731

    Article  CAS  Google Scholar 

  48. Franz R G. Comparisons of pKa and log P values of some carboxylic and phosphonic acids: synthesis and measurement. AAPS PharmSci, 2001, 3(2): 1–13

    Article  PubMed Central  Google Scholar 

  49. Guerrero G, Alauzun J G, Granier M, Laurencin D, Mutin P H. Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Transactions (Cambridge, England), 2013, 42(35): 12569–12585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, SSP is thankful to the Japanese society for the promotion of science (JSPS) for the financial support by a grant-in-aid for scientific research C (Grant No. 18K05300) to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Pandey.

Electronic Supplementary Material

11705_2021_2117_MOESM1_ESM.pdf

Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, A.K., Roy, P., Tang, L. et al. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells. Front. Chem. Sci. Eng. 16, 1060–1078 (2022). https://doi.org/10.1007/s11705-021-2117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2117-z

Keywords

Navigation