Skip to main content

Advertisement

Log in

Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soil nematode community is an important component of the soil food web, which has been widely recognized as a key bio-indicator for assessing the influence of nature restoration on ecological functions. However, the dynamics of the abundance, structure of soil nematode community remain unclear under nature restoration.

Methods

The soil nematode community of natural secondary forests was investigated using a chronosequence approach in subtropical forests in China. Six succession stages of nature restoration were sampled to represent forest stand age groups with 4-5, 8-12, 18-22, 25-30, 35-40 and over 100 years. To enhance our understanding of the factors influencing soil nematode communities, we also examined the relationships between plant community, soil microbial community, and soil properties by structural equation modeling.

Results

Soil nematode abundance gradually increased with forest stand ages, which reached a peak value (574 individuals 100 g−1 dry soil) in the oldest stands. Soil available nitrogen and phosphorus were key factors influencing soil nematode abundance and diversity during secondary forest succession. The plant parasite index decreased with forest stand ages, which indicated that ecosystem function and health would be improved as nature restoration. The structure of soil nematode community was more sensitive to microbial community compared to plant community. The bottom-up effects of microbial communities on soil nematode communities were important drivers of nematode communities in subtropical forests.

Conclusions

This study demonstrates the active responses of soil nematode community to nature restoration and highlights the importance of the above-ground and below-ground interactions to the soil food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amossé J, Dózsa-Farkas K, Boros G, Rochat G, Sandoz G, Fournier B, Mitchell E, Le Bayon R (2016) Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages. Eur J Soil Biol 73:46–58

    Article  Google Scholar 

  • Banning NC, Grant CD, Jones DL, Murphy DV (2008) Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence. Soil Biol Biochem 40(8):2021–2031

    Article  CAS  Google Scholar 

  • Bautista-Cruz A, del Castillo RF (2005) Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci Soc Am J 69(3):906–914

    Article  CAS  Google Scholar 

  • Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SHM, Levi T (2017) Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547(7664):441–444

    Article  CAS  PubMed  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83(1):14–19

    Article  PubMed  Google Scholar 

  • Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10(3):239–251

    Article  Google Scholar 

  • Calderon-Aguilera LE, Rivera-Monroy VH, Porter-Bolland L, Martínez-Yrízar A, Ladah LB, Martínez-Ramos M, Alcocer J, Santiago-Pérez AL, Hernandez-Arana HA, Reyes-Gómez VM, Pérez-Salicrup DR, Díaz-Nuñez V, Sosa-Ramírez J, Herrera-Silveira J, Búrquez A (2012) An assessment of natural and human disturbance effects on Mexican ecosystems: current trends and research gaps. Biodivers Conserv 21(3):589–617

    Article  Google Scholar 

  • Cesarz S, Ruess L, Jacob M, Jacob A, Schaefer M, Scheu S (2013) Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biol Biochem 62:36–45

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs e high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Lan Z, Bai X, Grace JB, Bai Y, van der Heijden M (2013) Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. J Ecol 101(5):1322–1334

    Article  CAS  Google Scholar 

  • Chen D, Lan Z, Hu S, Bai Y (2015) Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol Biochem 89:99–108

    Article  CAS  Google Scholar 

  • Cortois R, Veen GF, Duyts H, Abbas M, Strecker T, Kostenko O, Eisenhauer N, Scheu S, Gleixner G, De Deyn GB, van der Putten WH (2017) Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 8(5):e01719

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88(1):243–251

    Article  PubMed  Google Scholar 

  • De Deyn GB, Van Ruijven J, Raaijmakers CE, De Ruiter PC, Van Der Putten WH (2007) Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos 116(6):923–930

    Article  Google Scholar 

  • Dickie IA, Yeates GW, St. John MG, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MUF, Hunt JE, Burrows LE, Barbour MM, Aislabie J (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48(4):926–934

    Article  Google Scholar 

  • Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. P Nati Acad Sci USA 110(17):6889–6894

    Article  CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34(1):487–515

    Article  Google Scholar 

  • Francini G, Hui N, Jumpponen A, Kotze DJ, Romantschuk M, Allen JA, Setälä H (2018) Soil biota in boreal urban greenspace: Responses to plant type and age. Soil Biol Biochem 118:145–155

    Article  CAS  Google Scholar 

  • Frouz J, Jílková V, Cajthaml T, Pižl V, Tajovský K, Háněl L, Burešová A, Šimáčková H, Kolaříková K, Franklin J, Nawrot J, Groninger JW, Stahl PD (2013) Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil Biol Biochem 67:212–225

    Article  CAS  Google Scholar 

  • Grace JB (2008) Structural equation modeling for observational studies. J Wildl Manag 72:14–22

    Article  Google Scholar 

  • Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008) Soil food web structure during ecosystem development after land abandonment. Appl Soil Ecol 39(1):23–34

    Article  Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9(9):1080–8

    Article  PubMed  Google Scholar 

  • Keith AM, Brooker RW, Osler GHR, Chapman SJ, Burslem DFRP, van der Wal R (2009) Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol Biochem 41(6):1060–1065

    Article  CAS  Google Scholar 

  • Li J, Peng P, Zhao J (2019) Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters 2(1):33–39

    Article  Google Scholar 

  • Liu T, Whalen JK, Ran W, Shen Q, Li H (2016) Bottom-up control of fertilization on soil nematode communities differs between crop management regimes. Soil Biol Biochem 95:198–201

    Article  CAS  Google Scholar 

  • Martin KL, Hix DM, Goebel PC (2011) Coupling of vegetation layers and environmental influences in a mature, second-growth Central Hardwood forest landscape. For Ecol Manag 261(3):720–729

    Article  Google Scholar 

  • Morrien E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Aceves M, Tibbett M, Standish RJ (2017) Correlation between soil development and native plant growth in forest restoration after surface mining. Ecol Eng 106:209–218

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Catterall CP, Pollard PC, Kanowski J (2010) Recovery of soil properties and functions in different rainforest restoration pathways. Forest Ecol Manag 259(10):2083–2092

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Meiners SJ (2009) Ever since Clements: from succession to vegetation dynamics and understanding to intervention. Appl Veg Sci 12(1):9–21

    Article  Google Scholar 

  • Qin Z, Xie J, Quan G, Zhang J, Mao D, Wang J (2019) Changes in the soil meso- and micro‐fauna community under the impacts of exoticAmbrosia artemisiifolia. Ecol Res 34(2):265–276

    Article  Google Scholar 

  • Qu ZL, Liu B, Ma Y, Xu J, Sun H (2020) The response of the soil bacterial community and function to forest succession caused by forest disease. Funct Ecol 34:2548–2559

    Article  Google Scholar 

  • Renčo M, Čerevková A, Homolová Z, Gömöryová E (2015) Long-term effects on soil nematode community structure in spruce forests of removing or not removing fallen trees after a windstorm. Forest Ecol Manag 356:243–252

    Article  Google Scholar 

  • Scharroba A, Dibbern D, Hünninghaus M, Kramer S, Moll J, Butenschoen O, Bonkowski M, Buscot F, Kandeler E, Koller R, Krüger D, Lueders T, Scheu S, Ruess L (2012) Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol Biochem 50:1–11

    Article  CAS  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468(7323):553–556

    Article  CAS  PubMed  Google Scholar 

  • Sohlenius B (2002) Influence of clear-cutting and forest age on the nematode fauna in a Swedish pine forest soil. Appl Soil Ecol 19(3):261–277

    Article  Google Scholar 

  • Su X, Li S, Wan X, Huang Z, Liu B, Fu S, Kumar P, Chen HYH (2021) Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. Forest Ecol Manag 483:118750

  • Thornton CW, Matlack GR (2002) Long-term disturbance effects in the nematode communities of south Mississippi woodlands. J Nematol 34(2):88–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Clark M, Williams DR, Kimmel K, Polasky S, Packer C (2017) Future threats to biodiversity and pathways to their prevention. Nature 546(7656):73–81

    Article  CAS  PubMed  Google Scholar 

  • Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation leads to food web contraction. Oikos 121(2):299–305

    Article  Google Scholar 

  • Van Den Hoogen J, Geisen S, Routh D et al (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572(7768):194–198

    Article  PubMed  Google Scholar 

  • Van Der Putten WH, Bardgett RD, Bever JD et al (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276

    Article  Google Scholar 

  • Van Eekeren N, Van Liere D, De Vries F, Rutgers M, De Goede R, Brussaard L (2009) A mixture of grass and clover combines the positive effects of both plant species on selected soil biota. Appl Soil Ecol 42(3):254–263

    Article  Google Scholar 

  • Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2014) Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387(1–2):103–116

    Google Scholar 

  • Wang J, Li M, Zhang X, Liu X, Li L, Shi X, Hu H, Pan G (2019) Changes in soil nematode abundance and composition under elevated [CO2] and canopy warming in a rice paddy field.Plant Soil445,425–437

    Article  CAS  Google Scholar 

  • Wang J, Shi X, Li L, Zhang X (2021) Changes in soil nematodes in rhizosphere and non-rhizosphere soils following combined elevated [CO2] and canopy warming in a winter wheat field. Geoderma 386:114907

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629

    Article  CAS  PubMed  Google Scholar 

  • Wasilewska L (1994) The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia 38:1–11

    Google Scholar 

  • Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55(1):25–38

    Article  Google Scholar 

  • Williamson WM, Wardle DA, Yeates GW (2005) Changes in soil microbial and nematode communities during ecosystem decline across a long-term chronosequence. Soil Biol Biochem 37(7):1289–1301

    Article  CAS  Google Scholar 

  • Wilschut RA, Geisen S (2020) Nematodes as drivers of plant performance in natural systems. Trends Plant Sci 26(3):237–247

    Article  PubMed  Google Scholar 

  • Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22(8):1167–1169

    Article  CAS  Google Scholar 

  • Yang B, Pang X, Bao W, Zhou K (2018) Thinning-induced canopy opening exerted a specific effect on soil nematode community. Ecol Evol 8(8):3851–3861

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates G, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135

    Article  Google Scholar 

  • Zhang X, Guan P, Wang Y, Li Q, Zhang S, Zhang Z, Bezemer TM, Liang W (2015) Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol Biochem 80:118–126

    Article  CAS  Google Scholar 

  • Zhao J, Li S, He X, Liu L, Wang K (2014) The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLoS ONE 9(11):e112436

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant No. 31901165, 32071631, 41907022, 31930077, 31625007) and Natural Science Foundation of Fujian Province, China (Grant No. 2020J01186, 2020J01138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Sven Marhan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, Y., Shi, X. et al. Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests. Plant Soil 471, 315–327 (2022). https://doi.org/10.1007/s11104-021-05229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05229-9

Keywords

Navigation