Skip to main content

Advertisement

Log in

miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes. To test the effects of miR-146a-5p overexpression on visceral adipose tissue, wild-type, and df/df mice, were treated with miRNA-negative control-base and df/df were transfected with 4 or 8 µg/g of a miR-146a-5p mimetic, respectively. Effects of miR-146a-5p overexpression were also evaluated in 3T3-L1 cells cultured under high and normal glucose conditions. Treatment with miR-146a-5p mimetic increased cellular senescence and inflammation and decreased pro-apoptotic factors in visceral adipose tissue of df/df mice. The miR-146a-5p mimetic induced similar effects in 3T3-L1 cells cultivated at normal but not high glucose levels. Importantly, 3T3-L1 HG cells in high glucose conditions showed significantly higher expression of miR-146a-5p than 3T3-L1 grown in normal glucose conditions. These results indicate that miR-146a-5p can be a marker for cellular senescence. This miRNA represents one of the significant SASP factors that if not precisely regulated, can accentuate inflammatory responses and stimulate senescence in surrounding non-senescent cells. The role of miR-146a-5p is different in healthy versus stressed cells, suggesting potential effects of this miRNA depend on overall organismal health, aging, and metabolic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M, … Arner P. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 2012; 61(8):1986-1993https://doi.org/10.2337/db11-1508

  2. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B… van Deursen JM. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479(7372):232-236https://doi.org/10.1038/nature10600

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  4. Bartke A, Brown-Borg H. Life extension in the dwarf mouse. Curr Top Dev Biol. 2004;63:189–225. https://doi.org/10.1016/S0070-2153(04)63006-7.

    Article  CAS  PubMed  Google Scholar 

  5. Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C. Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol. 2001;36(1):21–8. https://doi.org/10.1016/s0531-5565(00)00205-9.

    Article  CAS  PubMed  Google Scholar 

  6. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412. https://doi.org/10.1038/35106646.

    Article  CAS  PubMed  Google Scholar 

  7. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F. … Campisi J . MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8 Aging (Albany NY). 2009; 1(4):402-411https://doi.org/10.18632/aging.100042

  8. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, … Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011; 208(6):1189-1201https://doi.org/10.1084/jem.20101823

  9. Cannarella R, Crafa A, La Vignera S, Condorelli RA, Calogero AE. Role of the GH-IGF1 axis on the hypothalamus-pituitary-testicular axis function: lessons from Laron syndrome. Endocr Connect. 2021;10(9):1006–17. https://doi.org/10.1530/EC-21-0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Catalanotto, C., Cogoni, C., & Zardo, G. (2016). MicroRNA in Control of Gene Expression: an Overview of Nuclear Functions. Int J Mol Sci, 17(10). doi:https://doi.org/10.3390/ijms17101712

  11. Chang TC, Hsu MF, Wu KK. High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS ONE. 2015;10(5): e0126537. https://doi.org/10.1371/journal.pone.0126537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77. https://doi.org/10.1038/nrclinonc.2011.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Lencastre, A., Pincus, Z., Zhou, K., Kato, M., Lee, S. S., & Slack, F. J. (2010). MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol, 20(24), 2159–2168. doi:https://doi.org/10.1016/j.cub.2010.11.015

  14. Do A, Menon V, Zhi X, Gesing A, Wiesenborn DS, SpongA, … Masternak MM. Thyroxine modifies the effects of growth hormone in Ames dwarf mice. Aging (Albany NY). 2015; 7(4):241-255https://doi.org/10.18632/aging.100739

  15. Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003;24(7):358–63. https://doi.org/10.1016/s1471-4906(03)00139-x.

    Article  CAS  PubMed  Google Scholar 

  16. Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology. 2010;11(4):501–6. https://doi.org/10.1007/s10522-010-9272-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem. 2002;277(35):32124–32. https://doi.org/10.1074/jbc.M203298200.

    Article  CAS  PubMed  Google Scholar 

  18. Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, … Grillari J. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell. 2010; 9(2):291-296https://doi.org/10.1111/j.1474-9726.2010.00549.x

  19. He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67(23):11099–101. https://doi.org/10.1158/0008-5472.CAN-07-2672.

    Article  CAS  PubMed  Google Scholar 

  20. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci. 2003;58(4):291–6. https://doi.org/10.1093/gerona/58.4.b291.

    Article  PubMed  Google Scholar 

  21. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223. https://doi.org/10.3390/ijms15046184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kinney-Forshee BA, Kinney NE, Steger RW, Bartke A. Could a deficiency in growth hormone signaling be beneficial to the aging brain? Physiol Behav. 2004;80(5):589–94. https://doi.org/10.1016/j.physbeh.2003.10.018.

    Article  CAS  PubMed  Google Scholar 

  23. Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K…Bluher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE. 2009; 4 (3): e4699https://doi.org/10.1371/journal.pone.0004699

  24. Kolenda T, Guglas K, Rys M, Bogaczynska M, Teresiak R, Blizniak … Lamperska KM. Biological role of long non-coding RNA in head and neck cancers. Rep Pract Oncol Radiother. 2017; 22(5):378-388https://doi.org/10.1016/j.rpor.2017.07.001

  25. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98(21):12072–7. https://doi.org/10.1073/pnas.211053698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 2006;4(1):9–12. https://doi.org/10.1016/j.cmet.2006.05.009.

    Article  CAS  PubMed  Google Scholar 

  27. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24(22):2463–79. https://doi.org/10.1101/gad.1971610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin X, Qin Y, Jia J, Lin T, Lin X, Chen L … Xiao D . MiR-155 enhances insulin sensitivity by coordinated regulation of multiple genes in mice. PLoS Genet. 2016; 12 (10):e1006308https://doi.org/10.1371/journal.pgen.1006308

  29. Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci (Lond). 2020;134(2):315–30. https://doi.org/10.1042/CS20190966.

    Article  CAS  Google Scholar 

  30. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, … Rudensky AY. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010; 142(6):914-929https://doi.org/10.1016/j.cell.2010.08.012

  31. Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22. https://doi.org/10.1074/jbc.M805371200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masternak MM, Al-Regaiey K, Bonkowski MS, Panici J, Sun L, Wang J … Bartke A . Divergent effects of caloric restriction on gene expression in normal and long-lived mice. J Gerontol A Biol Sci Med Sci. 2004; 59(8):784-788https://doi.org/10.1093/gerona/59.8.b784

  33. Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y … Westbrook R. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell. 2012; 11(1):73-81https://doi.org/10.1111/j.1474-9726.2011.00763.x

  34. Masternak MM, Darcy J, Victoria B, Bartke A. Dwarf Mice and Aging. Prog Mol Biol Transl Sci. 2018;155:69–83. https://doi.org/10.1016/bs.pmbts.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  35. Masternak MM, Panici JA, Bonkowski MS, Hughes LF, Bartke A. Insulin sensitivity as a key mediator of growth hormone actions on longevity. J Gerontol A Biol Sci Med Sci. 2009;64(5):516–21. https://doi.org/10.1093/gerona/glp024.

    Article  CAS  PubMed  Google Scholar 

  36. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87. https://doi.org/10.1016/j.cell.2012.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Menon V, Zhi X, Hossain T, Bartke A, Spong A, Gesing A, Masternak MM. The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell. 2014;13(3):497–506. https://doi.org/10.1111/acel.12201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother. 2018;23(1):6–20. https://doi.org/10.1016/j.rpor.2017.10.003.

    Article  PubMed  Google Scholar 

  39. Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64(7):2289–98. https://doi.org/10.2337/db14-1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM … Kirkland JL. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019; 18(3):e12950https://doi.org/10.1111/acel.12950

  41. Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J. 2010;24(12):5073–9. https://doi.org/10.1096/fj.10-163253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park H, Huang X, Lu C, Cairo MS, Zhou X. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 2015;290(5):2831–41. https://doi.org/10.1074/jbc.M114.591420.

    Article  CAS  PubMed  Google Scholar 

  43. Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing senescent cell burden in aging and disease. Trends Mol Med. 2020;26(7):630–8. https://doi.org/10.1016/j.molmed.2020.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, … Stoffel M . A pancreatic islet-specific microRNA regulates insulin secretion Nature. 2004; 432 (7014):226-230https://doi.org/10.1038/nature03076

  45. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, … Niedernhofer LJ. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021; 61 779-803https://doi.org/10.1146/annurev-pharmtox-050120-105018

  46. Roos J, Enlund E, Funcke JB, Tews D, Holzmann K, Debatin KM, …Fischer-Posovszky P . miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci Rep. 2016; 6:38339https://doi.org/10.1038/srep38339

  47. Saferding V, Hofmann M, Brunner JS, Niederreiter B, Timmen M, Magilnick N… Bluml S. microRNA-146a controls age-related bone loss. Aging Cell. 2020; 19(11):e13244https://doi.org/10.1111/acel.13244

  48. Schafer MJ, Miller JD, LeBrasseur NK. Cellular senescence: implications for metabolic disease. Mol Cell Endocrinol. 2017;455:93–102. https://doi.org/10.1016/j.mce.2016.08.047.

    Article  CAS  PubMed  Google Scholar 

  49. Schneider A, Matkovich SJ, Victoria B, Spinel L, Bartke A, Golusinski P, Masternak MM. Changes of ovarian microRNA profile in long-living Ames dwarf mice during aging. PLoS ONE. 2017;12(1): e0169213. https://doi.org/10.1371/journal.pone.0169213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimada BK, Yang Y, Zhu J, Wang S, Suen A, Kronstadt SM …W Chao. Extracellular miR-146a-5p induces cardiac innate immune response and cardiomyocyte dysfunction. Immunohorizons. 2020; 4 (9):561-572https://doi.org/10.4049/immunohorizons.2000075

  51. Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125(Pt 1):7–17. https://doi.org/10.1242/jcs.099200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM., . . . Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature, 1996; 384(6607), 327-333. doi:https://doi.org/10.1038/384327a0

  53. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A … Karsan A . Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010; 16(1):49-58https://doi.org/10.1038/nm.2054

  54. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res. 2006;9(1):31–5. https://doi.org/10.1089/rej.2006.9.31.

    Article  CAS  PubMed  Google Scholar 

  55. Sun X, Lin J, Zhang Y, Kang S, Belkin N, Wara AK …Feinberg MW. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016; 118 (5):810-821https://doi.org/10.1161/CIRCRESAHA.115.308166

  56. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity. 2007;26(2):133–7. https://doi.org/10.1016/j.immuni.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

  57. Victoria B, Dhahbi JM, Nunez Lopez YO, Spinel L, Atamna H, Spindler SR, Masternak MM. Circulating microRNA signature of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell. 2015;14(6):1055–66. https://doi.org/10.1111/acel.12373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol. 2017;455:131–47. https://doi.org/10.1016/j.mce.2016.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K …Grillari J. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell. 2016; 15(4):744-754https://doi.org/10.1111/acel.12484

  60. Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., . . . Kirkland, J. L. (2020). Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel), 12(8). doi:https://doi.org/10.3390/cancers12082134

  61. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA…JL Kirkland. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015; 4:e12997https://doi.org/10.7554/eLife.12997

  62. Yanagi, S., Tsubouchi, H., Miura, A., Matsuo, A., Matsumoto, N., & Nakazato, M. (2017). The impacts of cellular senescence in elderly pneumonia and in age-related lung diseases that increase the risk of respiratory infections. Int J Mol Sci, 18(3). doi:https://doi.org/10.3390/ijms18030503

  63. Zhang, B., Yi, J., Zhang, C. L., Zhang, Q. H., Xu, J. F., Shen, H. Q., & Ge, D. W. (2017). miR-146a inhibits proliferation and induces apoptosis in murine osteoblastic MC3T3-E1 by regulating Bcl2. Eur Rev Med Pharmacol Sci, 21(17), 3754–3762. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28975995

  64. Zhang M, Sun W, Zhou M, Tang Y. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci Rep. 2017;7(1):14493. https://doi.org/10.1038/s41598-017-15141-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108(22):9184–9. https://doi.org/10.1073/pnas.1105398108.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhu FY, Gan CW, Wang MX, Sun BC, Li FJ, Qiu YH, Wang K. miR-146a-5p inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells by regulating NF-kappaB signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3717–23. https://doi.org/10.26355/eurrev_202004_20835.

    Article  PubMed  Google Scholar 

  67. Zhu, H., & Fan, G. C. (2011). Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis, 1(2), 138–149. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22059153

  68. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, … Kirkland JL. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015; 14(4):644-658https://doi.org/10.1111/acel.12344

  69. Zhuohao Liu KKLW, Jiang X, Aimin Xu, Cheng KKY. The role of adipose tissue senescence in obesity-and ageing-related metabolic disorders. Clin Sci. 2020;134:315–30.

    Article  Google Scholar 

Download references

Funding

This work was supported by NIH grants R56 AG061414 (M.M.), R15 AG059190 (M.M), R03 AG059846 (M.M.), R21 AG062985 (M.M), R37AG13925 (JLK, TT) PO1 AG043376 (PDR), U19 AG056278 (PDR), and PO1AG062413 (JLK, TT, PDR). JLK and TT are also supported by the Connor Fund, Robert J. and Theresa W. Ryan, and the Noaber Foundation. A portion of this work was supported by NASA-Florida Space Grant Consortium, 66016A30 grant “Biomanufacturing of Vascularized Tissues”, and by the NASA (SSERVI16) Cooperative Agreement (NNH16ZDA001N) program titled “Radiation Effects on Volatiles and Exploration of Asteroids and Lunar Surfaces (REVEALS)”, 80ARC017M0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal M. Masternak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 128 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, A.D.C., Weigl, M., Schneider, A. et al. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience 44, 503–518 (2022). https://doi.org/10.1007/s11357-021-00490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00490-3

Keywords

Navigation