Skip to main content
Log in

Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  2. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med (Auckland, NZ). 2007;37(9):737–63.

    Article  Google Scholar 

  3. Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131–43.

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka H, Swensen T. Impact of resistance training on endurance performance. A new form of cross-training? Sports Med (Auckland, NZ). 1998;25(3):191–200.

    Article  CAS  Google Scholar 

  5. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82.

    Article  CAS  PubMed  Google Scholar 

  7. Henriksson J, Reitman JS. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand. 1977;99(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.

    Article  CAS  PubMed  Google Scholar 

  9. D’Antona G, Lanfranconi F, Pellegrino MA, Brocca L, Adami R, Rossi R, et al. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol. 2006;570(Pt 3):611–27.

    Article  CAS  PubMed  Google Scholar 

  10. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276(1 Pt 1):E118–24.

    CAS  PubMed  Google Scholar 

  11. Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2(10): e348.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harber MP, Konopka AR, Douglass MD, Minchev K, Kaminsky LA, Trappe TA, et al. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fry CS, Noehren B, Mula J, Ubele MF, Westgate PM, Kern PA, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592(12):2625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1078–87.

    Article  CAS  PubMed  Google Scholar 

  15. Balakrishnan VS, Rao M, Menon V, Gordon PL, Pilichowska M, Castaneda F, et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(6):996–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab. 2009;34(3):428–32.

    Article  CAS  PubMed  Google Scholar 

  17. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McMillan K, Helgerud J, Macdonald R, Hoff J. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med. 2005;39(5):273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong PL, Chaouachi A, Chamari K, Dellal A, Wisloff U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J Strength Cond Res. 2010;24(3):653–60.

    Article  PubMed  Google Scholar 

  20. Bell KE, Seguin C, Parise G, Baker SK, Phillips SM. Day-to-Day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. J Gerontol A Biol Sci Med Sci. 2015;70(8):1024–9.

    Article  CAS  PubMed  Google Scholar 

  21. Callahan MJ, Parr EB, Hawley JA, Camera DM. Can high-intensity interval training promote skeletal muscle anabolism? Sports Med. 2021;51(3):405–21.

    Article  PubMed  Google Scholar 

  22. World Health Organization. Global recommendations on physical activity for health. 2010.

  23. Balabinis CP, Psarakis CH, Moukas M, Vassiliou MP, Behrakis PK. Early phase changes by concurrent endurance and strength training. J Strength Cond Res. 2003;17(2):393–401.

    Article  PubMed  Google Scholar 

  24. Schumann M, Yli-Peltola K, Abbiss CR, Häkkinen K. Cardiorespiratory adaptations during concurrent aerobic and strength training in men and women. PLoS ONE. 2015;10(9): e0139279.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(Suppl 3):1–72.

    Article  PubMed  Google Scholar 

  26. Coffey VG, Hawley JA. Concurrent exercise training: Do opposites distract? J Physiol. 2017;595(9):2883–96.

    Article  CAS  PubMed  Google Scholar 

  27. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med (Auckland, NZ). 2014;44(6):743–62.

    Article  Google Scholar 

  28. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519–28.

    Article  PubMed  Google Scholar 

  29. Wisløff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jenner SL, Buckley GL, Belski R, Devlin BL, Forsyth AK. Dietary Intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations—a systematic literature review. Nutrients. 2019;11(5):1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HA. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. 2000;81(5):418–27.

    Article  CAS  PubMed  Google Scholar 

  32. Dolezal BA, Potteiger JA. Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals. J Appl Physiol (Bethesda, Md: 1985). 1998;85(2):695–700.

    Article  CAS  Google Scholar 

  33. Fyfe JJ, Bartlett JD, Hanson ED, Stepto NK, Bishop DJ. Endurance training intensity does not mediate interference to maximal lower-body strength gain during short-term concurrent training. Front Physiol. 2016;7:487.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol. 1980;45(2–3):255–63.

    Article  CAS  Google Scholar 

  35. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307.

    Article  PubMed  Google Scholar 

  36. Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Pakarinen A, Mero AA, et al. Strength, [corrected] endurance or combined training elicit diverse skeletal muscle myosin heavy chain isoform proportion but unaltered androgen receptor concentration in older men. Int J Sports Med. 2009;30(12):879–87.

    Article  CAS  PubMed  Google Scholar 

  37. McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34(3):511–9.

    Article  PubMed  Google Scholar 

  38. Methenitis S. A brief review on concurrent training: from laboratory to the field. Sports (Basel, Switzerland). 2018;6(4):127.

    PubMed  PubMed Central  Google Scholar 

  39. Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JA, Holmberg HC, et al. Endurance exercise enhances the effect of strength training on muscle fiber size and protein expression of Akt and mTOR. PLoS ONE. 2016;11(2): e0149082.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (Bethesda, Md: 1985). 2014;116(6):611–20.

    Article  Google Scholar 

  41. Doma K, Deakin GB, Schumann M, Bentley DJ. Training considerations for optimising endurance development: an alternate concurrent training perspective. Sports Med (Auckland, NZ). 2019;49(5):669–82.

    Article  Google Scholar 

  42. Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (Bethesda, Md: 1985). 2011;110(3):834–45.

    Article  CAS  Google Scholar 

  43. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr. 2007;98(3):458–73.

    Article  CAS  PubMed  Google Scholar 

  44. Burke LM, Kiens B, Ivy JL. Carbohydrates and fat for training and recovery. J Sports Sci. 2004;22(1):15–30.

    Article  PubMed  Google Scholar 

  45. Areta JL, Burke LM, Camera DM, West DW, Crawshay S, Moore DR, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989–97.

    Article  CAS  PubMed  Google Scholar 

  46. Pasiakos SM, Cao JJ, Margolis LM, Sauter ER, Whigham LD, McClung JP, et al. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB J. 2013;27(9):3837–47.

    Article  CAS  PubMed  Google Scholar 

  47. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17-27.

    Article  PubMed  Google Scholar 

  48. Perez-Schindler J, Hamilton DL, Moore DR, Baar K, Philp A. Nutritional strategies to support concurrent training. Eur J Sport Sci. 2015;15(1):41–52.

    Article  PubMed  Google Scholar 

  49. Cintineo HP, Arent MA, Antonio J, Arent SM. Effects of protein supplementation on performance and recovery in resistance and endurance training. Front Nutr. 2018;5:83.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr. 2017;14:20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kato H, Suzuki K, Bannai M, Moore DR. Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLoS ONE. 2016;11(6): e0157406.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lemon PW, Tarnopolsky MA, MacDougall JD, Atkinson SA. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol (Bethesda, Md: 1985). 1992;73(2):767–75.

    Article  CAS  Google Scholar 

  53. Phillips SM. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(Suppl 2):S158–67.

    Article  CAS  PubMed  Google Scholar 

  54. Longland TM, Oikawa SY, Mitchell CJ, Devries MC, Phillips SM. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 2016;103(3):738–46.

    Article  CAS  PubMed  Google Scholar 

  55. Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med (Auckland, NZ). 2014;44(5):655–70.

    Article  Google Scholar 

  56. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J aAppl Physiol (Bethesda, Md: 1985). 2009;106(5):1692–701.

    CAS  Google Scholar 

  57. Phillips SM, Hartman JW, Wilkinson SB. Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005;24(2):134s-s139.

    Article  PubMed  Google Scholar 

  58. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64.

    Article  CAS  PubMed  Google Scholar 

  59. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376–84.

    Article  PubMed  Google Scholar 

  60. Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–83.

    Article  CAS  PubMed  Google Scholar 

  62. Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1254–62.

    Article  CAS  PubMed  Google Scholar 

  63. Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, et al. Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med Sci Sports Exerc. 2012;44(4):682–91.

    Article  CAS  PubMed  Google Scholar 

  64. Camera DM, West DW, Burd NA, Phillips SM, Garnham AP, Hawley JA, et al. Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol (Bethesda, Md: 1985). 2012;113(2):206–14.

    Article  CAS  Google Scholar 

  65. Donges CE, Burd NA, Duffield R, Smith GC, West DW, Short MJ, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol (Bethesda, Md: 1985). 2012;112(12):1992–2001.

    Article  CAS  Google Scholar 

  66. Camera DM, West DW, Phillips SM, Rerecich T, Stellingwerff T, Hawley JA, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  67. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Peeters WM, Zorenc AH, Schierbeek H, et al. Myofibrillar and mitochondrial protein synthesis rates do not differ in young men following the ingestion of carbohydrate with whey, soy, or leucine-enriched soy protein after concurrent resistance- and endurance-type exercise. J Nutr. 2019;149(2):210–20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, et al. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS ONE. 2014;9(2): e89431.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Camera DM, Burniston JG, Pogson MA, Smiles WJ, Hawley JA. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J. 2017;31(12):5478–94.

    Article  CAS  PubMed  Google Scholar 

  72. Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig PR, et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol. 2016;594(18):5209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anderson L, Orme P, Naughton RJ, Close GL, Milsom J, Rydings D, et al. Energy intake and expenditure of professional soccer players of the english premier league: evidence of carbohydrate periodization. Int J Sport Nutr Exerc Metab. 2017;27(3):228–38.

    Article  CAS  PubMed  Google Scholar 

  74. Antonio J, Sanders MS, Ehler LA, Uelmen J, Raether JB, Stout JR. Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition (Burbank, Los Angeles County, Calif). 2000;16(11–12):1043–6.

    Article  CAS  PubMed  Google Scholar 

  75. Pasiakos SM, McLellan TM, Lieberman HR. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Med (Auckland, NZ). 2015;45(1):111–31.

    Article  Google Scholar 

  76. Lemon PW. Effects of exercise on dietary protein requirements. Int J Sport Nutr. 1998;8(4):426–47.

    Article  CAS  PubMed  Google Scholar 

  77. Forbes SC, Bell GJ. Whey protein isolate or concentrate combined with concurrent training does not augment performance, cardiorespiratory fitness, or strength adaptations. J Sports Med Phys Fitness. 2020;60(6):832–40.

    Article  CAS  PubMed  Google Scholar 

  78. Walker TB, Smith J, Herrera M, Lebegue B, Pinchak A, Fischer J. The influence of 8 weeks of whey-protein and leucine supplementation on physical and cognitive performance. Int J Sport Nutr Exerc Metab. 2010;20(5):409–17.

    Article  CAS  PubMed  Google Scholar 

  79. Dicks ND, Kotarsky CJ, Trautman KA, Barry AM, Keith JF, Mitchell S, et al. Contribution of protein intake and concurrent exercise to skeletal muscle quality with aging. J Frailty Aging. 2020;9(1):51–6.

    CAS  PubMed  Google Scholar 

  80. Häkkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.

    Article  PubMed  Google Scholar 

  81. Shamim B, Devlin BL, Timmins RG, Tofari P, Lee Dow C, Coffey VG, et al. Adaptations to concurrent training in combination with high protein availability: a comparative trial in healthy, recreationally active men. Sports Med (Auckland, NZ). 2018;48(12):2869–83.

    Article  Google Scholar 

  82. Arciero PJ, Gentile CL, Martin-Pressman R, Ormsbee MJ, Everett M, Zwicky L, et al. Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factors. Int J Sport Nutr Exerc Metab. 2006;16(4):373–92.

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs I, Kaiser P, Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol. 1981;46(1):47–53.

    Article  CAS  Google Scholar 

  84. Robineau J, Babault N, Piscione J, Lacome M, Bigard AX. Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J Strength Cond Res. 2016;30(3):672–83.

    Article  PubMed  Google Scholar 

  85. Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res. 2003;17(4):638–44.

    PubMed  Google Scholar 

  86. Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med (Auckland, NZ). 2018;48(1):177–88.

    Article  Google Scholar 

  87. Craig BW, Lucas J, Pohlman R, Stelling H. The effects of running, weightlifting and a combination of both on growth hormone release. J Strength Condition Res. 1991;5(4):198–203.

    Google Scholar 

  88. Jendricke P, Kohl J, Centner C, Gollhofer A, König D. Influence of specific collagen peptides and concurrent training on cardiometabolic parameters and performance indices in women: a randomized controlled trial. Front Nutr. 2020;7: 580918.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Narici MV, Landoni L, Minetti AE. Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol. 1992;65(5):438–44.

    Article  CAS  Google Scholar 

  91. Sedano S, Marín PJ, Cuadrado G, Redondo JC. Concurrent training in elite male runners: the influence of strength versus muscular endurance training on performance outcomes. J Strength Cond Res. 2013;27(9):2433–43.

    Article  PubMed  Google Scholar 

  92. Nuzzo JL, Finn HT, Herbert RD. Causal mediation analysis could resolve whether training-induced increases in muscle strength are mediated by muscle hypertrophy. Sports Med (Auckland, NZ). 2019;49(9):1309–15.

    Article  Google Scholar 

  93. Ormsbee MJ, Willingham BD, Marchant T, Binkley TL, Specker BL, Vukovich MD. Protein supplementation during a 6-month concurrent training program: effect on body composition and muscular strength in sedentary individuals. Int J Sport Nutr Exerc Metab. 2018;28(6):619–28.

    Article  CAS  PubMed  Google Scholar 

  94. Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LC, et al. There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc. 2015;16(5):400–11.

    Article  PubMed  Google Scholar 

  95. Campbell BI, Aguilar D, Conlin L, Vargas A, Schoenfeld BJ, Corson A, et al. Effects of high versus low protein intake on body composition and maximal strength in aspiring female physique athletes engaging in an 8-week resistance training program. Int J Sport Nutr Exerc Metab. 2018;28(6):580–5.

    Article  CAS  PubMed  Google Scholar 

  96. Josse AR, Tang JE, Tarnopolsky MA, Phillips SM. Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc. 2010;42(6):1122–30.

    Article  CAS  PubMed  Google Scholar 

  97. Murach KA, Bagley JR. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med (Auckland, NZ). 2016;46(8):1029–39.

    Article  Google Scholar 

  98. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99-107.

    CAS  PubMed  Google Scholar 

  99. Naughton M, Miller J, Slater GJ. Impact-induced muscle damage: performance implications in response to a novel collision simulator and associated timeline of recovery. J Sports Sci Med. 2018;17(3):417–25.

    PubMed  PubMed Central  Google Scholar 

  100. Gissel H, Clausen T. Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand. 2001;171(3):327–34.

    Article  CAS  PubMed  Google Scholar 

  101. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol (Bethesda, Md: 1985). 2017;122(3):559–70.

    Article  CAS  Google Scholar 

  102. Takarada Y. Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med. 2003;37(5):416–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, et al. Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J. 2015;29(7):2894–904.

    Article  CAS  PubMed  Google Scholar 

  104. Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med (Auckland, NZ). 2008;38(6):483–503.

    Article  Google Scholar 

  105. Knuiman P, Hopman MTE, Hangelbroek R, Mensink M. Plasma cytokine responses to resistance exercise with different nutrient availability on a concurrent exercise day in trained healthy males. Physiol Rep. 2018;6(11): e13708.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Braun WA, Dutto DJ. The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur J Appl Physiol. 2003;90(1–2):29–34.

    Article  PubMed  Google Scholar 

  107. Chen TC, Nosaka K, Lin MJ, Chen HL, Wu CJ. Changes in running economy at different intensities following downhill running. J Sports Sci. 2009;27(11):1137–44.

    Article  PubMed  Google Scholar 

  108. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol (Bethesda, Md: 1985). 1995;78(3):976–89.

    Article  CAS  Google Scholar 

  109. Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.

    Article  PubMed  Google Scholar 

  110. Lee MJ, Ballantyne JK, Chagolla J, Hopkins WG, Fyfe JJ, Phillips SM, et al. Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE. 2020;15(5): e0233134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rønnestad BR, Hansen EA, Raastad T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol. 2012;112(4):1457–66.

    Article  PubMed  Google Scholar 

  112. Minett GM, Costello JT. Specificity and context in post-exercise recovery: it is not a one-size-fits-all approach. Front Physiol. 2015;6:130.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Poulios A, Fatouros IG, Mohr M, Draganidis DK, Deli C, Papanikolaou K, et al. Post-game high protein intake may improve recovery of football-specific performance during a congested game fixture: results from the PRO-FOOTBALL study. Nutrients. 2018;10(4):494.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(Pt 2):333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol. 2020;120(9):1965–96.

    Article  PubMed  Google Scholar 

  117. Yu JG, Carlsson L, Thornell LE. Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol. 2004;121(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  118. Yu JG, Fürst DO, Thornell LE. The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol. 2003;119(5):383–93.

    Article  CAS  PubMed  Google Scholar 

  119. Cockburn E, Hayes PR, French DN, Stevenson E, St Clair Gibson A. Acute milk-based protein-CHO supplementation attenuates exercise-induced muscle damage. Appl Physiol Nutr Metab. 2008;33(4):775–83.

    Article  CAS  PubMed  Google Scholar 

  120. Etheridge T, Philp A, Watt PW. A single protein meal increases recovery of muscle function following an acute eccentric exercise bout. Appl Physiol Nutr Metab. 2008;33(3):483–8.

    Article  CAS  PubMed  Google Scholar 

  121. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect of a proprietary protein supplement on recovery indices following resistance exercise in strength/power athletes. Amino Acids. 2010;38(3):771–8.

    Article  CAS  PubMed  Google Scholar 

  122. Fedewa MV, Spencer SO, Williams TD, Becker ZE, Fuqua CA. Effect of branched-chain amino acid supplementation on muscle soreness following exercise: a meta-analysis. Int J Vitamin Nutr Res. 2019;89(5–6):348–56.

    Article  CAS  Google Scholar 

  123. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, et al. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2006;136(2):529s-s532.

    Article  CAS  PubMed  Google Scholar 

  125. Waskiw-Ford M, Hannaian S, Duncan J, Kato H, Abou Sawan S, Locke M, et al. Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men. Nutrients. 2020;12(4):1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ferguson-Stegall L, McCleave EL, Ding Z, Doerner PG 3rd, Wang B, Liao YH, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25(5):1210–24.

    Article  PubMed  Google Scholar 

  127. Poulios A, Georgakouli K, Draganidis D, Deli CK, Tsimeas PD, Chatzinikolaou A, et al. protein-based supplementation to enhance recovery in team sports: What is the evidence? J Sports Sci Med. 2019;18(3):523–36.

    PubMed  PubMed Central  Google Scholar 

  128. Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab. 2017;42(7):716–24.

    Article  CAS  PubMed  Google Scholar 

  129. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, Dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501–28.

    Article  PubMed  Google Scholar 

  130. Hyldahl RD, Chen TC, Nosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc Sport Sci Rev. 2017;45(1):24–33.

    Article  PubMed  Google Scholar 

  131. Dudley GA, Djamil R. Incompatibility of endurance- and strength-training modes of exercise. J Appl Physiol (Bethesda, Md: 1985). 1985;59(5):1446–51.

    Article  CAS  Google Scholar 

  132. Mikkola J, Rusko H, Izquierdo M, Gorostiaga EM, Häkkinen K. Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. Int J Sports Med. 2012;33(9):702–10.

    Article  CAS  PubMed  Google Scholar 

  133. Linari M, Bottinelli R, Pellegrino MA, Reconditi M, Reggiani C, Lombardi V. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. J Physiol. 2004;554(Pt 2):335–52.

    Article  CAS  PubMed  Google Scholar 

  134. Crowe MJ, Weatherson JN, Bowden BF. Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol. 2006;97(6):664–72.

    Article  CAS  PubMed  Google Scholar 

  135. Laskowski R, Antosiewicz J. Increased adaptability of young judo sportsmen after protein supplementation. J Sports Med Phys Fitness. 2003;43(3):342–6.

    CAS  PubMed  Google Scholar 

  136. Lee NA, Fell JW, Pitchford NW, Hall AH, Leveritt MD, Kitic CM. Combined carbohydrate and protein ingestion during Australian rules football matches and training sessions does not reduce fatigue or accelerate recovery throughout a weeklong junior tournament. J Strength Cond Res. 2018;32(2):344–55.

    Article  PubMed  Google Scholar 

  137. Gentle HL, Love TD, Howe AS, Black KE. A randomised trial of pre-exercise meal composition on performance and muscle damage in well-trained basketball players. J Int Soc Sports Nutr. 2014;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ferrauti A, Bergermann M, Fernandez-Fernandez J. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J Strength Cond Res. 2010;24(10):2770–8.

    Article  PubMed  Google Scholar 

  139. Jung AP. The impact of resistance training on distance running performance. Sports Med (Auckland, NZ). 2003;33(7):539–52.

    Article  Google Scholar 

  140. Millet GP, Jaouen B, Borrani F, Candau R. Effects of concurrent endurance and strength training on running economy and VO(2) kinetics. Med Sci Sports Exercise. 2002;34(8):1351–9.

    Article  Google Scholar 

  141. Sunde A, Støren O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J. Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. 2010;24(8):2157–65.

    Article  PubMed  Google Scholar 

  142. Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition (Burbank, Los Angeles County, Calif). 2004;20(7–8):716–27.

    Article  CAS  PubMed  Google Scholar 

  143. Gergley JC. Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res. 2009;23(3):979–87.

    Article  PubMed  Google Scholar 

  144. Gualano B, Roschel H, Lancha AH Jr, Brightbill CE, Rawson ES. In sickness and in health: the widespread application of creatine supplementation. Amino Acids. 2012;43(2):519–29.

    Article  CAS  PubMed  Google Scholar 

  145. Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18.

    Article  PubMed  PubMed Central  Google Scholar 

  146. de Salles PV, Alves VT, Ugrinowitsch C, Benatti FB, Artioli GG, Lancha AH Jr, et al. Creatine supplementation prevents acute strength loss induced by concurrent exercise. Eur J Appl Physiol. 2014;114(8):1749–55.

    Article  Google Scholar 

  147. Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.

    Article  CAS  PubMed  Google Scholar 

  148. Davies RW, Carson BP, Jakeman PM. The effect of whey protein supplementation on the temporal recovery of muscle function following resistance training: a systematic review and meta-analysis. Nutrients. 2018;10(2):221.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (Bethesda, Md: 1985). 2017;122(5):1068–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donny M. Camera.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of Interest

Donny Camera declares that he has no conflicts of interest relevant to the content of this review.

Authorship Contributions

DMC wrote and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camera, D.M. Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 52, 441–461 (2022). https://doi.org/10.1007/s40279-021-01585-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01585-9

Navigation