Skip to main content
Log in

Kissing Numbers of Regular Graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We prove a sharp upper bound on the number of shortest cycles contained inside any connected graph in terms of its number of vertices, girth, and maximal degree. Equality holds only for Moore graphs, which gives a new characterization of these graphs. In the case of regular graphs, our result improves an inequality of Teo and Koh. We also show that a subsequence of the Ramanujan graphs of Lubotzky-Phillips-Sarnak have super-linear kissing numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Azarija and S. Klavzar: Moore graphs and cycles are extremal graphs for convex cycles, J. Graph Theory 80 (2015), 34–42.

    Article  MathSciNet  Google Scholar 

  2. N. Alon: Eigenvalues and expanders, volume 6, 83–96. 1986, Theory of computing (Singer Island, Fla., 1984).

  3. P. T. Bateman: On the representations of a number as the sum of three squares, Trans. Amer. Math. Soc. 71 (1951), 70–101.

    Article  MathSciNet  Google Scholar 

  4. N. L. Biggs and A. G. Boshier: Note on the girth of Ramanujan graphs, J. Combin. Theory Ser. B 49 (1990), 190–194.

    Article  MathSciNet  Google Scholar 

  5. B. Bollobás and W. Fernandez de la Vega: The diameter of random regular graphs, Combinatorica 2 (1982), 125–134.

    Article  MathSciNet  Google Scholar 

  6. N. L. Biggs and M. J. Hoare: The sextet construction for cubic graphs, Combinatorica 3 (1983), 153–165.

    Article  MathSciNet  Google Scholar 

  7. N. Biggs: Algebraic graph theory, Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 1993.

    MATH  Google Scholar 

  8. N. Biggs: Constructions for cubic graphs with large girth, Electron. J. Combin. 5 (25, 1998), Article 1.

  9. J. H. Conway and N. J.A. Sloane: Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, third edition, 1999. (With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov.)

    Google Scholar 

  10. X. Dahan: Regular graphs of large girth and arbitrary degree, Combinatorica 34 (2014), 407–426.

    Article  MathSciNet  Google Scholar 

  11. G. Davidoff, P. Sarnak and A. Valette: Elementary number theory, group theory, and Ramanujan graphs, volume 55 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2003.

    MATH  Google Scholar 

  12. P. Erdős and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 12 (1963), 251–257.

    MathSciNet  MATH  Google Scholar 

  13. M. Fortier Bourque and B. Petri: Kissing numbers of closed hyperbolic manifolds. To appear in the American Journal of Mathematics, 2021+.

  14. F. Fanoni and H. Parlier: Systoles and kissing numbers of finite area hyperbolic surfaces, Algebr. Geom. Topol. 15 (2015), 3409–3433.

    Article  MathSciNet  Google Scholar 

  15. E. Grosswald: Representations of integers as sums of squares, Springer-Verlag, New York, 1985.

    Book  Google Scholar 

  16. N. Homobono and C. Peyrat: Graphs such that every two edges are contained in a shortest cycle, Discrete Math. 76 (1989), 37–44.

    Article  MathSciNet  Google Scholar 

  17. W. Imrich: Explicit construction of regular graphs without small cycles, Combinatorica 4 (1984), 53–59.

    Article  MathSciNet  Google Scholar 

  18. A. Lubotzky, R. Phillips and P. Sarnak: Ramanujan graphs, Combinatorica 8 (1988), 261–277.

    Article  MathSciNet  Google Scholar 

  19. N. Linial and M. Simkin: A randomized construction of high girth regular graphs, Random Structures & Algorithms 58 (2021), 345–369.

    Article  MathSciNet  Google Scholar 

  20. A. Lubotzky: Discrete groups, expanding graphs and invariant measures, Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. (With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition.)

    MATH  Google Scholar 

  21. G. A. Margulis: Explicit constructions of graphs without short cycles and low density codes, Combinatorica 2 (1982), 71–78.

    Article  MathSciNet  Google Scholar 

  22. G. A. Margulis: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators, Problemy Peredachi Informatsii 24 (1988), 51–60.

    MathSciNet  Google Scholar 

  23. B. D. McKay: Practical graph isomorphism, Congr. Numer. 30 (1981), 45–87.

    MathSciNet  MATH  Google Scholar 

  24. M. Morgenstern: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q, J. Combin. Theory Ser. B 62 (1994), 44–62.

    Article  MathSciNet  Google Scholar 

  25. B. D. McKay, N. C. Wormald and B. Wysocka: Short cycles in random regular graphs, Electron. J. Combin. 11 (12, 2004), Research Paper 66.

  26. H. Parlier: Kissing numbers for surfaces, J. Topol. 6 (2013), 777–791.

    Article  MathSciNet  Google Scholar 

  27. P. Sarnak: Some applications of modular forms, volume 99 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  28. N. T. Sardari: Diameter of Ramanujan graphs and random Cayley graphs, Combinatorica 39 (2019), 427–446.

    Article  MathSciNet  Google Scholar 

  29. P. Schmutz: Systoles on Riemann surfaces, Manuscripta Math. 85 (1994), 429–447.

    Article  MathSciNet  Google Scholar 

  30. C. L. Siegel: Gesammelte Abhandlungen. I, Springer Collected Works in Mathematics. Springer, Heidelberg, 2015, edited by Komaravolu Chandrasekharan and Hans Maaß, Reprint of the 1966 edition.

    MATH  Google Scholar 

  31. P. Schmutz Schaller: Extremal Riemann surfaces with a large number of systoles, in: Extremal Riemann surfaces (San Francisco, CA, 1995), volume 201 of Contemp. Math., 9–19. Amer. Math. Soc., Providence, RI, 1997.

    Chapter  Google Scholar 

  32. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.7), 2019, https://www.sagemath.org.

  33. C. P. Teo and K. M. Koh: The number of shortest cycles and the chromatic uniqueness of a graph, J. Graph Theory 16 (1992), 7–15.

    Article  MathSciNet  Google Scholar 

  34. S. Vlăduţ: Lattices with exponentially large kissing numbers, Mosc. J. Comb. Number Theory 8 (2019), 163–177.

    Article  MathSciNet  Google Scholar 

  35. M. A. van Opstall and R. Veliche: Cubic graphs with most automorphisms, J. Graph Theory 64 (2010), 99–115.

    MathSciNet  MATH  Google Scholar 

  36. A. Walfisz: Zur additiven Zahlentheorie. II, Math. Z. 40 (1936), 592–607.

    Article  MathSciNet  Google Scholar 

  37. R. M. Weiss: Über s-reguläre Graphen, J. Combinatorial Theory Ser. B 16 (1974), 229–233.

    Article  MathSciNet  Google Scholar 

  38. A. Weiss: Girths of bipartite sextet graphs, Combinatorica 4 (1984), 241–245.

    Article  MathSciNet  Google Scholar 

  39. N. Wormald: On the number of automorphisms of a regular graph, Proc. Amer. Math. Soc. 76 (1979), 345–348.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Fortier Bourque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourque, M.F., Petri, B. Kissing Numbers of Regular Graphs. Combinatorica 42, 529–551 (2022). https://doi.org/10.1007/s00493-021-4671-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-021-4671-x

Mathematics Subject Classification (2010)

Navigation