Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Shaping the future of robotics through materials innovation

New classes of functional soft materials show promise to revolutionize robotics. Now materials scientists must focus on realizing the predicted performance of these materials and developing effective and robust interfaces to integrate them into highly functional robotic systems that have a positive impact on human life.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials innovations that will shape the future of robotics.
Fig. 2: Realizing the predicted performance of emerging technologies.
Fig. 3: Interfaces between components inside a robot and between a robot and its environment.

References

  1. Haines, C. S. et al. Science 343, 868–872 (2014).

    Article  CAS  Google Scholar 

  2. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Nature 554, 81–85 (2018).

    Article  CAS  Google Scholar 

  3. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).

    Article  CAS  Google Scholar 

  4. Shintake, J., Rosset, S., Schubert, B., Floreano, D. & Shea, H. Adv. Mater. 28, 231–238 (2016).

    Article  CAS  Google Scholar 

  5. Rothemund, P. et al. Sci. Robot. 3, eaar7986 (2018).

    Article  Google Scholar 

  6. Wehner, M. et al. Nature 536, 451–455 (2016).

    Article  CAS  Google Scholar 

  7. Vantomme, G. et al. Nat. Mater. https://doi.org/10.1038/s41563-021-00931-6 (2021).

  8. Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Sci. Robot. 4, eaax7329 (2019).

    Article  Google Scholar 

  9. Hawkes, E. W., Majidi, C. & Tolley, M. T. Sci. Robot. 6, eabg6049 (2021).

    Article  Google Scholar 

  10. Acome, E. et al. Science 359, 61–65 (2018).

    Article  CAS  Google Scholar 

  11. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Nature 558, 274–279 (2018).

    Article  CAS  Google Scholar 

  12. Ohm, C., Brehmer, M. & Zentel, R. Adv. Mater. 22, 3366–3387 (2010).

    Article  CAS  Google Scholar 

  13. Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Sci. Robot. 3, eaar3276 (2018).

    Article  Google Scholar 

  14. Rothemund, P., Kellaris, N., Mitchell, S. K., Acome, E. & Keplinger, C. Adv. Mater. 33, 2003375 (2021).

    Article  CAS  Google Scholar 

  15. Kellaris, N., Venkata, V. G., Rothemund, P. & Keplinger, C. Extrem. Mech. Lett. 29, 100449 (2019).

    Article  Google Scholar 

  16. Xu, T., Zhang, J., Salehizadeh, M., Onaizah, O. & Diller, E. Sci. Robot. 4, eaav4494 (2019).

    Article  Google Scholar 

  17. Zhang, J. et al. Sci. Robot. 6, eabf0112 (2021).

    Article  Google Scholar 

  18. Xu, P. A. et al. Sci. Robot. 4, eaaw6304 (2019).

    Article  Google Scholar 

  19. Kramer, R. K., Majidi, C. & Wood, R. J. In 2011 IEEE International Conference on Robotics and Automation 1103–1107 https://doi.org/10.1109/ICRA.2011.5980082 (IEEE, 2011).

  20. Lipomi, D. J. et al. Nat. Nanotechnol. 6, 788–792 (2011).

    Article  CAS  Google Scholar 

  21. Sun, J.-Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Adv. Mater. 26, 7608–7614 (2014).

    Article  CAS  Google Scholar 

  22. Kaltenbrunner, M. et al. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  23. Kim, D.-H. et al. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  24. Van Meerbeek, I. M., De Sa, C. M. & Shepherd, R. F. Sci. Robot. 3, eaau2489 (2018).

    Article  Google Scholar 

  25. Bai, H. et al. Science 370, 848–852 (2020).

    Article  CAS  Google Scholar 

  26. Aubin, C. A. et al. Nature 571, 51–57 (2019).

    Article  CAS  Google Scholar 

  27. Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Sci. Robot. 6, eaay2627 (2021).

    Article  Google Scholar 

  28. Aubin, C. et al. Nature (in the press).

  29. Kim, Y., van den Berg, J. & Crosby, A. J. Nat. Mater. https://doi.org/10.1038/s41563-020-00909-w (2021).

  30. Peng, Y. et al. Nat. Mater. https://doi.org/10.1038/s41563-021-00990-9 (2021).

  31. Kang, B. B., Choi, H., Lee, H. & Cho, K.-J. Soft Robot. 6, 214–227 (2019).

    Article  Google Scholar 

  32. Kim, J. et al. Science 365, 668–672 (2019).

    Article  CAS  Google Scholar 

  33. Roche, E. T. et al. Sci. Transl. Med. 9, eaaf3925 (2017).

    Article  Google Scholar 

  34. Park, S. et al. Nat. Commun. 12, 3435 (2021).

    Article  CAS  Google Scholar 

  35. Yuk, H., Lu, B. & Zhao, X. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  Google Scholar 

  36. Yang, J., Bai, R., Chen, B. & Suo, Z. Adv. Funct. Mater. 30, 1901693 (2020).

    Article  CAS  Google Scholar 

  37. Zhao, X. et al. Chem. Rev. 121, 4309–4372 (2021).

    Article  CAS  Google Scholar 

  38. Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Nat. Mater. 15, 190–196 (2016).

    Article  CAS  Google Scholar 

  39. Bartlett, N. W. et al. Science 349, 161–165 (2015).

    Article  CAS  Google Scholar 

  40. Keplinger, C. et al. Science 341, 984–987 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.R. and C.K. acknowledge funding by the Max Planck Society, Germany. Y.K. acknowledges funding through scholarships from ILJU Academy and Culture Foundation and MIT School of Engineering MathWorks Fellowship. X.Z. acknowledges funding from the National Institutes of Health (no. 1R01HL153857-01) and the National Science Foundation (no. EFRI-1935291).

Author information

Authors and Affiliations

Authors

Contributions

C.K. developed the concept of the article. P.R. and C.K. led and coordinated the writing of the article. All authors contributed to the content and writing of the article.

Corresponding author

Correspondence to Christoph Keplinger.

Ethics declarations

Competing interests

P.R. and C.K. are listed as inventors of patents that cover fundamentals and basic designs of HASEL actuators as well as methods of fabrication. Y.K. and X.Z. are listed as inventors of patents that cover fundamental principles and fabrication techniques for 3D-printed magnetic soft actuators and magnetically steerable soft continuum robots. X.Z. is a co-founder of SanaHeal Inc., a start-up company commercializing bioadhesives. R.F.S. is listed as an inventor for patents regarding stretchable lightguide-based optical sensing platforms, and is a co-founder of Organic Robotics Corporation, which licenses these patents. C.K. is a co-founder of Artimus Robotics, a start-up company commercializing HASEL actuators.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothemund, P., Kim, Y., Heisser, R.H. et al. Shaping the future of robotics through materials innovation. Nat. Mater. 20, 1582–1587 (2021). https://doi.org/10.1038/s41563-021-01158-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01158-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing