Skip to main content
Log in

Inflation, phase transitions and the cosmological constant

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Cosmological phase transitions are thought to have taken place at the early Universe imprinting their properties on the observable Universe. There is strong evidence that, through the dynamics of a scalar field that lead a second order phase transition, inflation shaped the Universe accounting for the most conspicuous features of the observed Universe. It is argued that inflation has also striking implications for the vacuum energy. Considerations for subsequent second order phase transitions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guth, A.H.: Phys. Rev. D 23, 347–356 (1981)

    Article  ADS  Google Scholar 

  2. Albrecht, A., Steinhardt, P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  3. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  4. Linde, A.D.: Phys. Lett. B 114, 431 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Linde, A.D.: Phys. Lett. B 116(335), 340 (1982)

    Article  ADS  Google Scholar 

  6. Olive, K.: Phys. Rep. 190, 307 (1990)

    Article  ADS  Google Scholar 

  7. Zeldovich, Y.B.: JETP Lett. 6, 316–317 (1967)

    ADS  Google Scholar 

  8. Zeldovich, Y.B.: Sov. Phys. Uspekhi 1(1), 381–393 (1968)

    Article  ADS  Google Scholar 

  9. Akhmedov, E.K.: Vacuum energy and relativistic invariance. hep-th/0204048

  10. Dreitlein, J.: Phys. Rev. Lett. 33, 1243 (1974)

    Article  ADS  Google Scholar 

  11. Linde, A.D.: JETP Lett. 19, 183 (1974)

    ADS  Google Scholar 

  12. Veltman, M.: Phys. Rev. Lett. 34, 777 (1975)

    Article  ADS  Google Scholar 

  13. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  14. Carroll, S.: Living Rev. Rel. 4, 1 (2001)

    Article  MathSciNet  Google Scholar 

  15. Sahni, V., Starobinsky, A.: Int. J. M. Phys. D 9, 373–444 (2000)

    Article  ADS  Google Scholar 

  16. Bertolami, O.: Int. J. Mod. Phys. D 18, 2303–2310 (2009)

    Article  ADS  Google Scholar 

  17. Kaloper, N., Padilla, A.: Phys. Rev. Lett. 112, 091304 (2014)

    Article  ADS  Google Scholar 

  18. Kaloper, N., Padilla, A.: Phys. Rev. D 90, 084023 (2014)

    Article  ADS  Google Scholar 

  19. Bertolami, O., Páramos, J.: Gen. Rel. Grav. 52, 44 (2020)

    Article  ADS  Google Scholar 

  20. Bekenstein, J.D.: Phys. Rev. D 23, 287–298 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bekenstein, J.D.: Found. Phys. 35, 1805–1823 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Coleman, S.: Phys. Rev. D 15, 2929 (1977)

    Article  ADS  Google Scholar 

  23. Coleman, S.: Erratum. Phys. Rev. D 16, 1248 (1977)

    Article  ADS  Google Scholar 

  24. Callan, C.G., Coleman, S.: Phys. Rev. D 16, 1762 (1977)

    Article  ADS  Google Scholar 

  25. Coleman, S., De Luccia, F.: Phys. Rev. D 21, 3305–3315 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. Berera, A.: Phys. Rev. Lett. 75, 3218 (1995)

    Article  ADS  Google Scholar 

  27. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  28. Kibble, T.W.B.: J. Phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  29. Kibble, T.W.B.: Phys. Rev. 67, 183 (1980)

    Google Scholar 

  30. Kibble, T.W.B., Hindmarsh, M.: Rep. Prog. Phys. 58, 477 (1995)

    Article  ADS  Google Scholar 

  31. Linde, A.D.: Rep. Prog. Phys. 42, 389 (1979)

    Article  ADS  Google Scholar 

  32. Ginsparg, P.: Nucl. Phys. B 170, 388–408 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  33. March-Russell, J.: Phys. Lett. B 296, 364–370 (1992)

    Article  ADS  Google Scholar 

  34. Nicolis, S.: Second order phase transition in anisotropic lattice gauge theories with extra dimensions (2010). arXiv:1010.5281 [hep-lat]

  35. Ogilvie, M.C.: J. Phys. A: Math. Theor. 45, 483001 (2012)

    Article  Google Scholar 

  36. Sami, M., Gannouji, R.: Spontaneous symmetry breaking in the late Universe and glimpses of early Universe phase transitions ‘a la baryogenesis (2021). arXiv:2106.00843 [gr-qc]

  37. Bertolami, O., Colladay, D., Kostelecky, V.A., Potting, R.: Phys. Lett. B 395, 178–183 (1997)

    Article  ADS  Google Scholar 

  38. Witten, E.: The cosmological constant from the viewpoint of string theory. hep-ph/0002297

  39. Susskind, L.: The anthropic landscape of string theory. hep-th/0603249

  40. Susskind, L.: The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little Brown, New York (2005)

    Google Scholar 

  41. Polchinski, J.: The cosmological constant and the string landscape. hep-th/0603249

  42. Bousso, R., Polchinski, J.: JHEP 0006, 006 (2000)

    Article  ADS  Google Scholar 

  43. Bertolami, O.: Gen. Rel. Grav. 40, 1891 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. Alonso-Serrano, A., Bastos, C., Bertolami, O., Robles-Perez, S.: Phys. Lett. B 719, 200–205 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Robles-Perez, S., Alonso-Serrano, A., Bastos, C., Bertolami, O.: Phys. Lett. B 759, 328–335 (2016)

    Article  ADS  Google Scholar 

  46. Zhang, X., Long, G., Ma, Y.: Loop quantum gravity and cosmological constant. arXiv:2101.07527v1 [gr-qc]

  47. Penrose, R.: In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

  48. Penrose, R.: In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon Press, Oxford (1981)

  49. Bronstein, M.P.: Phys. Z. Sowjetunion 3, 73 (1933)

    Google Scholar 

  50. Bertolami, O.: Il Nuovo Cimento 93, 36 (1986)

    Article  Google Scholar 

  51. Bertolami, O.: Fortsch. Phys. 34, 829 (1986)

    ADS  Google Scholar 

  52. Ozer, M., Taha, O.: Nucl. Phys. B 287, 776 (1987)

    Article  ADS  Google Scholar 

  53. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753–1936 (2006)

    Article  ADS  Google Scholar 

  54. Peebles, P.J.E., Vilenkin, A.: Phys. Rev. D 59, 063505 (1999)

    Article  ADS  Google Scholar 

  55. Dimopoulos, K., Valle, J.W.F.: Astropart. Phys. 18, 287 (2002)

    Article  ADS  Google Scholar 

  56. Bertolami, O., Duvvuri, V.: Phys. Lett. B 640, 121–125 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orfeu Bertolami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolami, O. Inflation, phase transitions and the cosmological constant. Gen Relativ Gravit 53, 106 (2021). https://doi.org/10.1007/s10714-021-02877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02877-1

Keywords

Navigation