Skip to main content

Advertisement

Log in

Reforming of Fluctuating Biogas Compositions with Non-thermal Plasma for Enhancement of Spark Ignition Engine Performance

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Biogas with fluctuating composition is reformed with non-thermal plasma (NTP) as a form of fuel processing, increasing the efficiency and reducing emissions of internal combustion engines. Biogas is a mixture of methane (typically CH4, ~ 60%) and carbon dioxide (typically CO2, ~ 40%) produced from the decomposition of organic wastes that is used as a gaseous fuel. However, depending on the decomposition process, the CO2 content can be excessively high (~ 60%), reducing the energy content. Alternatively, the CO2 could be separated and captured from the biogas to produce bio-compressed natural gas with the option to sequester the CO2 and mitigate climate change. This study uses a dielectric barrier discharge reactor that produces NTP to convert less favorable biogas compositions and CO2, to higher hydrocarbons, hence increasing the energy content. The syngas is injected into a dual-fuel spark ignition (DFSI) engine, and the flue emissions are measured to determine the change in efficiency, based on the potential amount of recoverable energy from reductions in emissions and increase in flue gas temperatures (FGT). Results show that after reforming with NTP, the biogas energy content increases by 72–118% due to increased presence of hydrocarbons. When the syngas is injected into the DFSI engine, the hydrocarbon and carbon monoxide emissions in the flue gas reduce by 4–9%, the FGT increases from 180 to 309 °C, and the efficiency increases by 3–26%. The DFSI engine’s throttle opening changes the in-cylinder air–fuel ratio, which affect the flue gas temperatures and the resulting emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gómez Montoya JP, Amador Diaz GJ, Amell Arrieta AA (2018) Effect of equivalence ratio on knocking tendency in spark ignition engines fueled with fuel blends of biogas, natural gas, propane and hydrogen. Int J Hydrogen Energy 43(51):23041–23049. https://doi.org/10.1016/j.ijhydene.2018.10.117

    Article  CAS  Google Scholar 

  2. Gómez Montoya JP, Amell AA, Olsen DB, Amador Diaz GJ (2018) Strategies to improve the performance of a spark ignition engine using fuel blends of biogas with natural gas, propane and hydrogen. Int J Hydrogen Energy 43(46):21592–21602. https://doi.org/10.1016/j.ijhydene.2018.10.009

    Article  CAS  Google Scholar 

  3. Sarkar A, Saha UK (2018) Role of global fuel-air equivalence ratio and preheating on the behaviour of a biogas driven dual fuel diesel engine. Fuel 232:743–754. https://doi.org/10.1016/j.fuel.2018.06.016

    Article  CAS  Google Scholar 

  4. Danhua M, Xinbo Z, Ya-Ling H, Joseph DY, Xin T (2015) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol 24(1):015011

    Google Scholar 

  5. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques––a review. Bioresour Technol 95(1):1–10. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  6. Alper E, Yuksel Orhan O (2017) CO2 utilization: developments in conversion processes. Petroleum 3(1):109–126. https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  7. Tomohiro N, Yasuko U, Yuh M, Ken O (2001) Optical diagnostics for determining gas temperature of reactive microdischarges in a methane-fed dielectric barrier discharge. J Phys D Appl Phys 34(16):2504

    Article  Google Scholar 

  8. Tada S, Ikeda S, Shimoda N, Honma T, Takahashi M, Nariyuki A, Satokawa S (2017) Sponge Ni catalyst with high activity in CO2 methanation. Int J Hydrog Energy 42(51):30126–30134. https://doi.org/10.1016/j.ijhydene.2017.10.138

    Article  CAS  Google Scholar 

  9. Chen C, Wang X, Huang H, Zou X, Gu F, Su F, Lu X (2019) Synthesis of mesoporous Ni–La–Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Process Technol 185:56–67. https://doi.org/10.1016/j.fuproc.2018.11.017

    Article  CAS  Google Scholar 

  10. Zafarnak S, Bakhtyari A, Taghvaei H, Rahimpour MR, Iulianelli A (2020) Conversion of ethane to ethylene and hydrogen by utilizing carbon dioxide: screening catalysts. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.150

    Article  Google Scholar 

  11. Khoja AH, Tahir M, Amin NAS (2019) Recent developments in non-thermal catalytic DBD plasma reactor for dry reforming of methane. Energy Convers Manag 183:529–560

    Article  CAS  Google Scholar 

  12. George A, Shen B, Craven M, Wang Y, Kang D, Wu C (2021) A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew Sustain Energy Rev 135:109702

    Article  CAS  Google Scholar 

  13. Coşkun S (2015) Plasma-based recycling of carbon dioxide. Tecnico Lisboa

    Google Scholar 

  14. Devasahayam S (2019) Review: opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes. Sustain Mater Technol 22:e00119. https://doi.org/10.1016/j.susmat.2019.e00119

    Article  CAS  Google Scholar 

  15. Pou JO, Colominas C, Gonzalez-Olmos R (2018) CO2 reduction using non-thermal plasma generated with photovoltaic energy in a fluidized reactor. J CO2 Util 27:528–535. https://doi.org/10.1016/j.jcou.2018.08.019

    Article  CAS  Google Scholar 

  16. Amon B, Amon T, Boxberger J, Alt C (2001) Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading). Nutr Cycl Agroecosyst 60:103–113

    Article  CAS  Google Scholar 

  17. Wu Y, Kovalovszki A, Pan J, Lin C, Liu H, Duan N, Angelidaki I (2019) Early warning indicators for mesophilic anaerobic digestion of corn stalk: a combined experimental and simulation approach. Biotechnol Biofuels 12(1):106. https://doi.org/10.1186/s13068-019-1442-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Njoku PO, Odiyo JO, Durowoju OS, Edokpayi JN (2018) A review of landfill gas generation and utilisation in Africa. Open Environ Sci 10:1–15

    Article  Google Scholar 

  19. Mao S, Tan Z, Zhang L, Huang Q (2018) Plasma-assisted biogas reforming to syngas at room temperature condition. J Energy Inst 91(2):172–183. https://doi.org/10.1016/j.joei.2017.01.003

    Article  CAS  Google Scholar 

  20. Lee H, Kim DH (2018) Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads. Sci Rep 8(1):9956. https://doi.org/10.1038/s41598-018-28170-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eliasson B, Liu C-J, Kogelschatz U (2000) Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39(5):1221–1227. https://doi.org/10.1021/ie990804r

    Article  CAS  Google Scholar 

  22. Tozlu A (2020) Techno-economic assessment of a synthetic fuel production facility by hydrogenation of CO2 captured from biogas. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.12.066

    Article  Google Scholar 

  23. Ghosh S, Uday V, Giri A, Srinivas S (2019) Biogas to methanol: a comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. J Clean Prod 217:615–626. https://doi.org/10.1016/j.jclepro.2019.01.171

    Article  CAS  Google Scholar 

  24. Ray D, Chawdhury P, Subrahmanyam C (2020) A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor. Environ Res 183:109286

    Article  CAS  Google Scholar 

  25. Xu S, Wu Y, Song F, Chen X, Jin D (2021) Experimental investigation on DBD plasma reforming hydrocarbon blends. Plasma Sci Technol 23(8):085509. https://doi.org/10.1088/2058-6272/ac0c07

    Article  CAS  Google Scholar 

  26. Saleem F, Kennedy J, Dahiru UH, Zhang K, Harvey A (2019) Methane conversion to H2 and higher hydrocarbons using non-thermal plasma dielectric barrier discharge reactor. Chem Eng Process Process Intensif 142:107557. https://doi.org/10.1016/j.cep.2019.107557

    Article  CAS  Google Scholar 

  27. Simsek S, Uslu S (2020) Investigation of the impacts of gasoline, biogas and LPG fuels on engine performance and exhaust emissions in different throttle positions on SI engine. Fuel 279:118528. https://doi.org/10.1016/j.fuel.2020.118528

    Article  CAS  Google Scholar 

  28. Hotta SK, Sahoo N, Mohanty K (2019) Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas. Renew Energy 134:1307–1319. https://doi.org/10.1016/j.renene.2018.09.049

    Article  CAS  Google Scholar 

  29. Kan X, Zhou D, Yang W, Zhai X, Wang C-H (2018) An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine. Appl Energy 212:210–222. https://doi.org/10.1016/j.apenergy.2017.12.037

    Article  CAS  Google Scholar 

  30. Nadaleti WC, Przybyla G (2018) Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries. Energy 154:38–51. https://doi.org/10.1016/j.energy.2018.04.046

    Article  CAS  Google Scholar 

  31. Hernández JJ, Lapuerta M, Barba J (2016) Separate effect of H2, CH4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel 165:173–184. https://doi.org/10.1016/j.fuel.2015.10.054

    Article  CAS  Google Scholar 

  32. Hernández JJ, Lapuerta M, Barba J (2015) Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy 89:148–157. https://doi.org/10.1016/j.energy.2015.07.050

    Article  CAS  Google Scholar 

  33. Sahoo BB, Sahoo N, Saha UK (2012) Effect of H2:CO ratio in syngas on the performance of a dual fuel diesel engine operation. Appl Therm Eng 49:139–146. https://doi.org/10.1016/j.applthermaleng.2011.08.021

    Article  CAS  Google Scholar 

  34. Pérez NP, Pedroso DT, Machin EB, Antunes JS, Verdú Ramos RA, Silveira JL (2018) Prediction of the minimum fluidization velocity of particles of sugarcane bagasse. Biomass Bioenergy 109:249–256. https://doi.org/10.1016/j.biombioe.2017.12.004

    Article  CAS  Google Scholar 

  35. Sun J, Chen Q, Guo Y, Zhou Z, Song Y (2020) Quantitative behavior of vibrational excitation in AC plasma assisted dry reforming of methane. J Energy Chem 46:133–143. https://doi.org/10.1016/j.jechem.2019.11.002

    Article  Google Scholar 

  36. Striūgas N, Tamošiūnas A, Marcinauskas L, Paulauskas R, Zakarauskas K, Skvorčinskienė R (2020) A sustainable approach for plasma reforming of tail biogas for onsite syngas production during lean combustion operation. Energy Convers Manage 209:112617. https://doi.org/10.1016/j.enconman.2020.112617

    Article  CAS  Google Scholar 

  37. Snoeckx R, Aerts R, Tu X, Bogaerts A (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. J Phys Chem C 117(10):4957–4970. https://doi.org/10.1021/jp311912b

    Article  CAS  Google Scholar 

  38. Wang W, Snoeckx R, Zhang X, Cha MS, Bogaerts A (2018) Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture. J Phys Chem C 122(16):8704–8723. https://doi.org/10.1021/acs.jpcc.7b10619

    Article  CAS  Google Scholar 

  39. Lee S, Kim C, Lee S, Oh S, Kim J, Lee J (2021) Characteristics of non-methane hydrocarbons and methane emissions in exhaust gases under natural-gas/diesel dual-fuel combustion. Fuel 290:120009. https://doi.org/10.1016/j.fuel.2020.120009

    Article  CAS  Google Scholar 

  40. Behbahaninia A, Ramezani S, Lotfi Hejrandoost M (2017) A loss method for exergy auditing of steam boilers. Energy 140:253–260. https://doi.org/10.1016/j.energy.2017.08.090

    Article  CAS  Google Scholar 

  41. Junga R, Chudy P, Pospolita J (2017) Uncertainty estimation of the efficiency of small-scale boilers. Measurement 97:186–194. https://doi.org/10.1016/j.measurement.2016.11.011

    Article  Google Scholar 

  42. Roosa SA, Doty S, Turner WC (2018) Energy management handbook. Fairmont Press

    Google Scholar 

  43. Zhao L, Liu X, Mu X, Li Y, Fang K (2020) Highly selective conversion of H2S–CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3. J CO2 Util 37:45–54. https://doi.org/10.1016/j.jcou.2019.11.021

    Article  CAS  Google Scholar 

  44. Yabe T, Sekine Y (2018) Methane conversion using carbon dioxide as an oxidizing agent: a review. Fuel Process Technol 181:187–198. https://doi.org/10.1016/j.fuproc.2018.09.014

    Article  CAS  Google Scholar 

  45. Li X, Wang Y, Fan H, Liu Q, Zhang S, Hu G, Xu L, Hu X (2021) Impacts of residence time on transformation of reaction intermediates and coking behaviors of acetic acid during steam reforming. J Energy Inst 95:101–119. https://doi.org/10.1016/j.joei.2021.01.004

    Article  CAS  Google Scholar 

  46. Wnukowski M, van de Steeg AW, Hrycak B, Jasiński M, van Rooij GJ (2021) Influence of hydrogen addition on methane coupling in a moderate pressure microwave plasma. Fuel 288:119674. https://doi.org/10.1016/j.fuel.2020.119674

    Article  CAS  Google Scholar 

  47. Babaie M, Davari P, Talebizadeh P, Zare F, Rahimzadeh H, Ristovski Z, Brown R (2015) Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chem Eng J 276:240–248. https://doi.org/10.1016/j.cej.2015.04.086

    Article  CAS  Google Scholar 

  48. Ombrello T, Won SH, Ju Y, Williams S (2010) Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combust Flame 157(10):1906–1915. https://doi.org/10.1016/j.combustflame.2010.02.005

    Article  CAS  Google Scholar 

  49. Yi M (2021) A complete guide to violin plots. https://chartio.com/learn/charts/violin-plot-complete-guide/. Accessed August 5 2021

  50. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184. https://doi.org/10.1080/00031305.1998.10480559

    Article  Google Scholar 

  51. Valipour Berenjestanaki A, Kawahara N, Tsuboi K, Tomita E (2021) Performance, emissions and end-gas autoignition characteristics of PREMIER combustion in a pilot fuel-ignited dual-fuel biogas engine with various CO2 ratios. Fuel 286:119330. https://doi.org/10.1016/j.fuel.2020.119330

    Article  CAS  Google Scholar 

  52. Feroskhan M, Ismail S (2016) Investigation of the effects of biogas composition on the performance of a biogas–diesel dual fuel CI engine. Biofuels 7(6):593–601. https://doi.org/10.1080/17597269.2016.1168025

    Article  CAS  Google Scholar 

  53. Tartakovsky L, Sheintuch M (2018) Fuel reforming in internal combustion engines. Prog Energy Combust Sci 67:88–114. https://doi.org/10.1016/j.pecs.2018.02.003

    Article  Google Scholar 

  54. Kim H, Song S (2020) Concept design of a novel reformer producing hydrogen for internal combustion engines using fuel decomposition method: Performance evaluation of coated monolith suitable for on-board applications. Int J Hydrogen Energy 45(16):9353–9367. https://doi.org/10.1016/j.ijhydene.2020.01.227

    Article  CAS  Google Scholar 

  55. Bagheri M, Borhani TNG, Zahedi G (2012) Estimation of flash point and autoignition temperature of organic sulfur chemicals. Energy Convers Manag 58:185–196. https://doi.org/10.1016/j.enconman.2012.01.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding from Tenaga Nasional Berhad, Malaysia (TNBR/SF348/2019) and those who have contributed directly or indirectly to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mooktzeng Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, M., Nimelnair, S. & Lea-Langton, A.R. Reforming of Fluctuating Biogas Compositions with Non-thermal Plasma for Enhancement of Spark Ignition Engine Performance. Plasma Chem Plasma Process 42, 283–301 (2022). https://doi.org/10.1007/s11090-021-10219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10219-x

Keywords

Navigation