Skip to main content

Advertisement

Log in

Identification of active magnetic bearing parameters in a rotor machine using Bayesian inference with generalized polynomial chaos expansion

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Rotating machines are widely used in industry. They are composed of rotative components such as shaft and blades, which are connected to a static support structure by bearings. Rolling bearings and fluid lubricated bearings are commonly used for this function. However, in the last decades, active magnetic bearings (AMB) have gained importance in some applications. These bearings can support the shaft of such machines without contact and apply active control through electromagnetic forces. On the other hand, uncertainties are inherent to engineering systems and they should be quantified to obtain better models. Bayesian inference is an interesting option to identify or update the probability distributions of a random variable. Monte Carlo via Markov chains is usually implemented to solve the inference, but its processing time can be long. By using generalized polynomial chaos expansion, the solution process is accelerated. This work aims to identify the AMB parameters and unbalance force. After the identification, the stochastic response is evaluated and compared with experimental data from a test rig supported by AMB. The robustness of the identification is evaluated by inserting noise in the signal. A sensitivity analysis is performed through Sobol indices to evaluate if the AMB uncertainties should be considered in future analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nelson HD, McVaugh JM (1976) The dynamics of rotor-bearing systems using finite elements. J Eng Ind 98(2):593–600

    Article  Google Scholar 

  2. Nelson HD (1980) A finite rotating shaft element using timoshenko beam theory. J Mech Design 102:793–803

    Article  Google Scholar 

  3. Schweitzer G (1992) Mechatronics–a concept with examples in active magnetic bearings. Mechatronics 2(1):65–74

    Article  Google Scholar 

  4. Wamba FF (2009) Automatische Auswuchtstrategie für einen magnetgelagerten elastischen Rotor mit Auswuchtaktoren, PhD Dissertation, Technischen Universität Darmstadt, Darmstadt, Germany

  5. Wamba FF, Nordmann R (2008) Active balancing of a flexible rotor in active magnetic bearing, In: Proceedings of the 11th International Symposium on Magnetic Bearings, Nara, Japan

  6. Xu Y, Zhou J, Lin Z, Jin C (2018) Identification of dynamic parameters of active magnetic bearings in a flexible rotor system considering residual unbalances. Mechatronics 49:46–55

    Article  Google Scholar 

  7. Koroishi ED, Cavalini AA, de Lima AMG, Steffen V (2012) Stochastic modeling of flexible rotors. J Braz Soc Mech Sci Eng 34:574–583

    Article  Google Scholar 

  8. Cavalini AA, Lara-Molina FA, Sales TP, Koroishi ED, Steffen V (2015) Stochastic modeling of flexible rotors uncertainty analysis of a flexible rotor supported by fluid film bearings. Latin Am J Solids Struct 12(8):1487–1504

    Article  Google Scholar 

  9. da Silva HAP, Nicoletti R (2019) Design of tilting-pad journal bearings considering bearing clearance uncertainty and reliability analysis. ASME J Tribol, DOI 10(1115/1):4041021

    Google Scholar 

  10. da Silva HAP, Nicoletti R (2019) Stochastic Analysis of Asymmetric Tilting-Pad Journal Bearings. In: Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. IFToMM 2018. Mechanisms and Machine Science, vol 60. Springer, Cham, pp. 252–263

  11. Garoli GY, Castro HF (2019) Analysis of a rotor-bearing nonlinear system model considering fluid-induced instability and uncertainties in bearings. J Sound Vib 448:108–129

    Article  Google Scholar 

  12. Garoli GY, Castro HF (2020) Generalized polynomial chaos expansion applied to uncertainties quantification in rotating machinery fault analysis. J Braz Soc Mech Sci Eng 42:610

    Article  Google Scholar 

  13. Visnadi LB, Castro HF (2019) Influence of bearing clearance and oil temperature uncertainties on the stability threshold of cylindrical journal bearings. Mech Mach Theory 134:57–73

    Article  Google Scholar 

  14. Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461

    Article  Google Scholar 

  15. Katafygiotis LS, Beck JL (1998) Updating models and their uncertainties. II: model identifiability. J Eng Mech 124(4):463–467

    Article  Google Scholar 

  16. Beck JL, Au SK (2002) Bayesian updating of structural models and reliability using markov chain monte carlo simulation. J Eng Mech 128(4):380–391

    Article  Google Scholar 

  17. Yan WJ, Chronopoulos D, Papadimitriou C, Cantero-Chinchilla S, Zhu GS (2020) Bayesian inference for damage identification based on analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme. J Sound Vibration. https://doi.org/10.1016/j.jsv.2019.115083

    Article  Google Scholar 

  18. Jiang X, Yuan Y, Liu X (2011) Bayesian inference method for stochastic damage accumulation modelling. Reliab Eng Syst Saf 111:126–138

    Article  Google Scholar 

  19. Fu S, Celeux G, Bousquet N, Couplet M (2015) Bayesian inference for invers problems occurring in uncertainty analysis. Int J Uncertain Quantif 5(1):73–98

    Article  MathSciNet  Google Scholar 

  20. Yuen KV, Ortiz GA (2016) Bayesian nonparametric general regression. Int J Uncertain Quantif 6(3):195–213

    Article  MathSciNet  Google Scholar 

  21. Bansal S, Cheung SH (2016) Stochastic sampling based Bayesian model updating with incomplete modal data. Int J Uncertain Quantif 6(3):229–244

    Article  MathSciNet  Google Scholar 

  22. Tyminski NC, Tuckmantel FWS, Cavalca KL, Castro HF (2017) Bayesian inference applied to journal bearing parameter identification. J Braz Soc Mech Sci Eng 39:2983–3004

    Article  Google Scholar 

  23. Pérez CJ, Martín J, Rufo MJ (2006) Sensitivity estimations for Bayesian inference models solved by MCMC methods. Reliab Eng Syst Saf 91:1310–1314

    Article  Google Scholar 

  24. Marzouk Y, Xiu D (2009) A stochastic collocation approach to bayesian inference in inverse problems. Commun Comput Phys 6(4):826–847

    Article  MathSciNet  Google Scholar 

  25. Nagel J, Sudret B (2016) Spectral likelihood expansions for bayesian inference. J Comput Phys 309:267–294

    Article  MathSciNet  Google Scholar 

  26. Madankan R, Singla P, Singh T, Scott PD (2013) Polynomial-chaos-based bayesian approach for state and parameter estimations. J Guid Control Dyn 36(4):1058–1074

    Article  Google Scholar 

  27. Yan L, Zhou T (2019) Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. J Comput Phys 381:110–128

    Article  MathSciNet  Google Scholar 

  28. Cruz-Jiménez H, Li G, Mai PM, Hoteit I, Knio OM (2018) Bayesian inference of earthquake rupture models using polynomial chaos expansion. Geosci Model Dev 11:3071–3088

    Article  Google Scholar 

  29. Sraj I, Zedler SE, Knio OM, Jackson CS, Hoteit I (2016) Polynomial chaos-based bayesian inference of K-profile parameterization in a general circulation model of the Tropical Pacific. Mon Wea Rev 144(12):4621–4640

    Article  Google Scholar 

  30. Huan X, Marzouk YM (2014) Gradient-based stochastic optimization methods in Bayesian experimental design. Int J Uncertain Quantif 4(6):479–510

    Article  MathSciNet  Google Scholar 

  31. Sargsyan K, Huan X, Najm HN (2019) Embedded model error representation for Bayesian model calibration. Int J Uncertain Quantif 9(4):365–394

    Article  MathSciNet  Google Scholar 

  32. Garoli GY, Alves DS, Machado TH, Cavalca KL, Castro HF (2021) Fault parameter identification in rotating system: comparison between deterministic and stochastic approaches. Struct Health Monit. https://doi.org/10.1177/1475921720981737

    Article  Google Scholar 

  33. Wiener R (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Article  MathSciNet  Google Scholar 

  34. Xiu D, Karniadakis G (2002) The wiener-askey polynomial chaos for stochastic differential equations. J Sci Comput 24(2):619–644

    MathSciNet  MATH  Google Scholar 

  35. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93:964–979

    Article  Google Scholar 

  36. Liu W, Novak M (1995) Dynamic behaviour of turbine-generator-foundation. Earthquake Eng Struct Dyn 24(3):339–360

    Article  Google Scholar 

  37. Lalanne M, Ferraris G (1999) Rotordynamics prediction in engineering, 2nd edn. Wiley, Chichester

    Google Scholar 

  38. Gibbons CB (1976) Coupling Misalignment Forces, In: Proceedings of 5th Turbomachinery Symposium, Gas Turbine Laboratories, Texas A&M University, pp.111–116

  39. Sekhar AS, Prabhu BS (1995) Effects of coupling misalignment on vibrations of rotating machinery. J Sound Vib 185(4):665–671

    Article  Google Scholar 

  40. Boer W (1998) Active Magnetic Bearings: modelling and control of a five degrees of freedom rotor, Master Thesis, Eindhoven University of Technology, Eindhoven, Netherlands

  41. Boer W (1998) Software Manual for the miniVS: C3. Eindhoven University of Technology, Department of Electrical Engineering, Measurement and Control Group

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP), grants #2015/20363-6, #2016/13223-6 and #2018/02976-9, for the financial support to this research.

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo,#2015/20363–6,Hélio Fiori de Castro,#2016/13223–6,Gabriel Garoli,#2018/02976–9,Gabriel Garoli

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helio F. de Castro.

Additional information

Technical Editor: Andre T. Beck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garoli, G.Y., Pilotto, R., Nordmann, R. et al. Identification of active magnetic bearing parameters in a rotor machine using Bayesian inference with generalized polynomial chaos expansion. J Braz. Soc. Mech. Sci. Eng. 43, 552 (2021). https://doi.org/10.1007/s40430-021-03287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03287-9

Keywords

Navigation