Skip to main content

Advertisement

Log in

Microbial colonization and decomposition of commercial tea and native alder leaf litter in temperate streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Leaf litter decomposition in streams is a fundamental ecosystem process that allows for the cycling of nutrients. The rate at which leaf litter decomposes is greatly controlled by its intrinsic characteristics. However, intraspecific variation in leaf litter characteristics poses a major challenge for large-scale studies aiming at identifying the environmental moderators of leaf litter decomposition. Thus, several standardized organic substrates have been proposed as surrogates for leaf litter. Tea bags were proposed as a standardized alternative to leaf litter for studies in soil and their use in aquatic ecosystems has been growing in recent years. It is therefore necessary to evaluate how tea is colonized and decomposed by aquatic microbial decomposers to assess its usefulness as a surrogate for leaf litter in litter decomposition studies. Here we compared the microbial colonization (based on the reproductive activity of aquatic hyphomycetes) and decomposition of green and rooibos teas and native alder leaf litter in two streams differing in environmental conditions. Colonization of green tea was lower than that of alder leaf litter, but their decomposition rates were similar. In contrast, colonization of rooibos tea was similar to that of alder leaf litter, but it decomposed 3–4 × slower. Results were consistent in both streams. Despite differences in magnitude, dynamics of microbial colonization and decomposition of tea were similar to those of alder leaf litter and were sensitive to substrate characteristics. Tea may be used as a surrogate for leaf litter in studies addressing microbial-driven leaf litter decomposition in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Data are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Abdel-Raheem AM, Ali EH (2004) Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157:277–286

    CAS  PubMed  Google Scholar 

  • Abril M, Menendez M, Ferreira V (2021) Decomposition of leaf litter mixtures in streams: effects of component litter species and current velocity. Aquat Sci 83:54

    Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Bärlocher F, Schweizer M (1983) Effects of leaf size and decay rate on colonization by aquatic hyphomycetes. Oikos 41:205–210

    Google Scholar 

  • Biasi C, Graça MAS, Santos S, Ferreira V (2017) Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing. Oecologia 184:555–568

    PubMed  Google Scholar 

  • BICON (2021) Australian biosecurity import conditions. Dried or preserved flowers and foliage. Australian Government. Department of Agriculture, Water and the Environment. https://bicon.agriculture.gov.au/BiconWeb4.0/ImportConditions/Questions/EvaluateCase?elementID=0000067983&elementVersionID=268. Accessed on 7 September 2021

  • Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves JF Jr, Moretti MS, Jingut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC (2011) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–294

    PubMed  Google Scholar 

  • Brosed M, Jabiol J, Gessner MO (2017) Nutrient stoichiometry of aquatic hyphomycetes: interstrain variation and ergosterol conversion factores. Fungal Ecol 29:97–102

    Google Scholar 

  • Canhoto C, Graça MAS (1996) Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333:79–85

    CAS  Google Scholar 

  • Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468

    PubMed  Google Scholar 

  • Chamier AC (1985) Cell-wall-degrading enzymes of aquatic hyphomycetes: a review. Bot J Linn Soc 91:67–81

    Google Scholar 

  • Cornut J, Elger A, Lambrigot D, Marmonier P, Chauvet E (2010) Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshw Biol 55:2541–2556

    Google Scholar 

  • Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Caliman A, Paquette A, Gutiérrez-Girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Fernández ACR, Sousa AI, Lillebø AI, Gripp AR, Francez A-J, Fischer A, Bohner A, Malyshev A, Andrić A, Smith A, Stanisci A, Seres A, Schmidt A, Avila A, Probst A, Ouin A, Khuroo AA, Verstraeten A, Palabral-Aguilera AN, Stefanski A, Gaxiola A, Muys B, Bosman B, Ahrends B, Parker B, Sattler B, Yang B, Juráni B, Erschbamer B, Ortiz CER, Christiansen CT, Adair EC, Meredieu C, Mony C, Nock CA, Chen C-L, Wang C-P, Baum C, Rixen C, Delire C, Piscart C, Andrews C, Rebmann C, Branquinho C, Polyanskaya D, Delgado DF, Wundram D, Radeideh D, Ordóñez-Regil E, Crawford E, Preda E, Tropina E, Groner E, Lucot E, Hornung E, Gacia E, Lévesque E, Benedito E, Davydov EA, Ampoorter E, Bolzan FP, Varela F, Kristöfel F, Maestre FT, Maunoury-Danger F, Hofhansl F, Kitz F, Sutter F, Cuesta F, Lobo FA, Souza FL, Berninger F, Zehetner F, Wohlfahrt G, Vourlitis G, Carreño-Rocabado G, Arena G, Pinha GD, González G, Canut G, Lee H, Verbeeck H, Auge H, Pauli H, Nacro HB, Bahamonde HA, Feldhaar H, Jäger H, Serrano HC, Verheyden H, Bruelheide H, Meesenburg H, Jungkunst H, Jactel H, Shibata H, Kurokawa H, Rosas HL, Villalobos HLR, Yesilonis I, Melece I, van Halder I, Quirós IG, Makelele I, Senou I, Fekete I, Mihal I, Ostonen I, Borovská J, Roales J, Shoqeir J, Lata JC, Theurillat J-P, Probst J-L, Zimmerman J, Vijayanathan J, Tang J, Thompson J, Doležal J, Sanchez-Cabeza J-A, Merlet J, Henschel J, Neirynck J, Knops J, Loehr J, von Oppen J, Þorláksdóttir JS, Löffler J, Cardoso-Mohedano J-G, Benito-Alonso J-L, Torezan JM, Morina JC, Jiménez JJ, Quinde JD, Alatalo J, Seeber J, Stadler J, Kriiska K, Coulibaly K, Fukuzawa K, Szlavecz K, Gerhátová K, Lajtha K, Käppeler K, Jennings KA, Tielbörger K, Hoshizaki K, Green K, Yé L, Pazianoto LHR, Dienstbach L, Williams L, Yahdjian L, Brigham LM, van den Brink L, Rustad L, Zhang L, Morillas L, Xiankai L, Carneiro LS, Martino LD, Villar L, Bader MY, Morley M, Lebouvier M, Tomaselli M, Sternberg M, Schaub M, Santos-Reis M, Glushkova M, Torres MGA, Giroux M-A, Graaff M-A, Pons M-N, Bauters M, Mazón M, Frenzel M, Didion M, Wagner M, Hamid M, Lopes ML, Apple M, Schädler M, Weih M, Gualmini M, Vadeboncoeur MA, Bierbaumer M, Danger M, Liddell M, Mirtl M, Scherer-Lorenzen M, Růžek M, Carbognani M, Musciano MD, Matsushita M, Zhiyanski M, Pușcaș M, Barna M, Ataka M, Jiangming M, Alsafran M, Carnol M, Barsoum N, Tokuchi N, Eisenhauer N, Lecomte N, Filippova N, Hölzel N, Ferlian N, Romero O, Pinto OB, Peri P, Weber P, Vittoz P, Turtureanu PD, Fleischer P, Macreadie P, Haase P, Reich P, Petřík P, Choler P, Marmonier P, Muriel P, Ponette Q, Guariento RD, Canessa R, Kiese R, Hewitt R, Rønn R, Adrian R, Kanka R, Weigel R, Gatti RC, Martins RL, Georges R, Meneses RI, Gavilán RG, Dasgupta S, Wittlinger S, Puijalon S, Freda S, Suzuki S, Charles S, Gogo S, Drollinger S, Mereu S, Wipf S, Trevathan-Tackett S, Löfgren S, Stoll S, Trogisch S, Hoeber S, Seitz S, Glatzel S, Milton SJ, Dousset S, Mori T, Sato T, Ise T, Hishi T, Kenta T, Nakaji T, Michelan TS, Camboulive T, Mozdzer TJ, Scholten T, Spiegelberger T, Zechmeister T, Kleinebecker T, Hiura T, Enoki T, Ursu T-M, Cella U-M, Hamer U, Klaus VH, Rêgo V-M, Cecco V, Busch V, Fontana V, Piscová V, Carbonell V, Ochoa V, Bretagnolle V, Maire V, Farjalla V, Zhou W, Luo W, McDowell WH, Hu Y, Utsumi Y, Kominami Y, Zaika Y, Rozhkov Y, Kotroczó Z, Tóth Z (2018) Early stage litter decomposition across biomes. Sci Total Environ 628–629:1369–1394

    PubMed  Google Scholar 

  • Duarte S, Cássio F, Ferreira V, Canhoto C, Pascoal C (2016) Seasonal variability may affect microbial decomposers and leaf decomposition more than warming in streams. Microb Ecol 72:263–276

    CAS  PubMed  Google Scholar 

  • Duarte S, Cássio F, Pascoal C, Bärlocher F (2017) Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE 12:e0181545

    PubMed  PubMed Central  Google Scholar 

  • Eggleton P, Griffiths H, Ashton L, Law S, Evans TA, Pass K (2020) Not our cup of tea: The Tea Bag Index (Keuskamp et al. 2013) for assessing decomposition is problematic in most environments, due to macrofauna. Ecol Evol. https://doi.org/10.22541/au.160502884.44867586/v1

    Article  Google Scholar 

  • European Commission (2000) Directive 2000⁄60⁄EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal 22 December 2000 L 327⁄1. European Commission, Brussels

    Google Scholar 

  • Fanin N, Bezaud S, Sarneel JM, Cecchini S, Nicolas M, Augusto L (2020) Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter. Ecosystems 23:1004–1018

    Google Scholar 

  • Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Change Biol 17:551–564

    Google Scholar 

  • Ferreira V, Graça MAS (2016) Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica 58:69–77

    CAS  Google Scholar 

  • Ferreira V, Elosegi A, Gulis V, Pozo J, Graça MAS (2006a) Eucalyptus plantations affect fungal communities associated with leaf litter decomposition in Iberian streams. Arch Hydrobiol 166:467–490

    CAS  Google Scholar 

  • Ferreira V, Gulis V, Graça MAS (2006b) Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149:718–729

    PubMed  Google Scholar 

  • Ferreira V, Encalada AC, Graça MAS (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–962

    Google Scholar 

  • Ferreira V, Raposeiro PM, Pereira A, Cruz AM, Costa AC, Graça MAS, Gonçalves V (2016) Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshw Biol 61:783–799

    CAS  Google Scholar 

  • Ferreira V, Boyero L, Calvo C, Correa F, Figueroa R, Gonçalves JF Jr, Goyenola G, Graça MAS, Hepp LU, Kariuki S, Lopez-Rodriguez A, Mazzeo N, M’Erimba C, Peil A, Pozo J, Rezende R, Teixeira-de-Mello F (2019) A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22:629–642

    Google Scholar 

  • Ferreira V, Elosegi A, Tiegs SD, von Schiller D, Young R (2020) Organic matter decomposition and ecosystem metabolism as tools to assess the functional integrity of streams and rivers—a systematic review. Water 12:3523

    CAS  Google Scholar 

  • Ferreira V, Silva J, Cornut J, Sobral O, Bachelet Q, Bouquerel J, Danger M (2021) Organic-matter decomposition as a bioassessment tool of stream functioning: a comparison of eight decomposition-based indicators exposed to different environmental changes. Environ Pollut 290:118111

    CAS  PubMed  Google Scholar 

  • Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817

    Google Scholar 

  • Gessner MO, Chauvet E (2002) A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510

    Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    PubMed  Google Scholar 

  • Graça MA, Poquet JM (2014) Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–1032

    PubMed  Google Scholar 

  • Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Google Scholar 

  • Gulis V, Marvanová L, Descals E (2020) An illustrated key to the common temperate species of aquatic hyphomycetes. In: Bärlocher F, Gessner MO, Graça MAS (eds) Methods to study litter decomposition—a practical guide, 2nd edn. Springer, pp 223–240

    Google Scholar 

  • Hamilton-Miller JMT (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother 39:2375–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026v1038

    Google Scholar 

  • Jabiol J, Lecerf A, Lamothe S, Gessner MO, Chauvet E (2019) Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities. Microb Ecol 77:959–966

    CAS  PubMed  Google Scholar 

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075

    Google Scholar 

  • Lalimi FY, Silvestri S, D’Alpaos A, Roner M, Marani M (2018) The spatial variability of organic matter and decomposition processes at the marsh scale. J Geophys Res Biogeosci 123:3713–3727

    Google Scholar 

  • Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605

    Google Scholar 

  • LeRoy CJ, Wooley SC, Lindroth RL (2012) Genotype and soil nutrient environment influence aspen litter chemistry and in-stream decomposition. Freshw Sci 31:1244–1253

    Google Scholar 

  • Marks JC (2019) Revisiting the fates of dead leaves that fall into streams. Annu Rev Ecol Evol Syst 50:547–568

    Google Scholar 

  • Marley ARG, Smeaton C, Austin WEN (2019) An assessment of the Tea Bag Index method as a proxy for organic matter decomposition in intertidal environments. J Geophys Res Biogeosci 124:2991–3004

    CAS  Google Scholar 

  • Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014) Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiol Ecol 87:257–267

    PubMed  Google Scholar 

  • Molinero J, Pozo J (2004) Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small dytrsm. Hydrobiologia 528:143–165

    CAS  Google Scholar 

  • Mori T (2021) Tea Bags—standard materials for testing impacts of nitrogen addition on litter decomposition in aquatic ecosystems? Nitrogen 2:259–267

    Google Scholar 

  • Mori T, Ono K, Sakai Y (2021) Testing the Tea Bag Index as a potential indicator for assessing litter decomposition in aquatic ecosystems. BioRxiv. https://doi.org/10.1101/2021.04.26.441560

    Article  PubMed  PubMed Central  Google Scholar 

  • MPI (2021) New Zealand Ministry for Primary Industries. Importing dried and preserved plant products. https://www.mpi.govt.nz/import/plants-flowers-seeds-plant-growing-products/dried-preserved-plant-products. Accessed on 7 September 2021

  • Mueller P, Schiler-Beers LM, Mozdzer TJ, Chmura GL, Dinter T, Kuzyakov Y, de Groot AV, Esselink P, Smit C, D’Alpaos A, Ibáñez C, Lazarus M, Neumeier U, Johnsson BJ, Baldwin AH, Yardood SA, Montemayor DI, Yang Z, Wu J, Jensen K, Nolte S (2018) Global-change effects on early-stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences 15:3189–3202

    CAS  Google Scholar 

  • Ostrofsky ML (1997) Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J N Am Benthol Soc 16:750–759

    Google Scholar 

  • Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Maraver I, Perkins DM, Thompson MSA, Fussmann K, Reiss J, Robertson AL (2019) Comparing biotic drivers of litter breakdown across stream compartments. J Anim Ecol 88:1146–1157

    PubMed  PubMed Central  Google Scholar 

  • Pereira A, Geraldes P, Lima-Fernandes E, Fernandes I, Cássio F, Pascoal C (2016) Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecol Ind 69:648–656

    CAS  Google Scholar 

  • Pereira A, Figueiredo A, Ferreira V (2021) Invasive instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microb Ecol 83:257–273

    Google Scholar 

  • Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M (2019) Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435:187–200

    CAS  Google Scholar 

  • Ramos SM, Graça MAS, Ferreira V (2021) A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquat Ecol 55:925–949

    Google Scholar 

  • Sanfuentes E, Fajardo S, Sabag M, Hansen E, González M (2016) Phytophthora kernoviae isolated from fallen leaves of Drymis winteri in native forest of southern Chile. Aust Plant Dis Notes 11:19

    Google Scholar 

  • Seelen LMS, Flaim G, Keuskamp J, Teurlincx S, Font RA, Tolunay D, Fránková M, Sumberová K, Temponeras M, Lenhardt M, Jennings E, Domis LNS (2019) An affordable and reliable assessment of aquatic decomposition: tailoring the Tea Bag Index to surface waters. Water Res 151:31–43

    CAS  PubMed  Google Scholar 

  • Suberkropp K, Arsuffi TL (1984) Degradation, growth, and changes in palatability of leaves colonized by six aquatic hyphomycete species. Mycologia 76:398–407

    Google Scholar 

  • Trevathan-Tackett SM, Brodersen KE, Macreadie PI (2020) Effects of elevated temperature on microbial breakdown of seagrass leaf and tea litter biomass. Biogeochemistry 151:171–185

    CAS  Google Scholar 

  • Trevathan-Tackett SM, Kepfer-Rojas S, Engelen AH, York PH, Ola A, Li J, Kelleway JJ, Jinks KI, Jackson EL, Adame MF, Pendall E, Lovelock CE, Connolly RM, Watson A, Visby I, Trethowan A, Taylor B, Roberts TNB, Petch J, Farrington L, Djukic I, Macreadie PI (2021) Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Sci Total Environ 782:146819

    CAS  PubMed  Google Scholar 

  • Webber JF, Rose J (2008) Dissemination of aerial and root infecting Phytophthoras by human vectors. In: Frankel SJ, Kliejunas JT, Palmieri KM (eds) Proceof the sudden oak death third science symposium. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, pp 195–198

    Google Scholar 

  • Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursiere J, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB-M, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440

    CAS  PubMed  Google Scholar 

  • Zemek J, Marvanová L, Kuniak L, Kadlecikova B (1985) Hydrolytic enzymes in aquatic hyphomycetes. Folia Microbiol 30:363–372

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Ana Pereira and Olímpia Sobral for the help in the field, and two anonymous reviewers for their comments on an earlier version of the manuscript.

Funding

This work was supported by the Portuguese Foundation for Science and Technology through project UIDB/04292/2020 granted to MARE, contracts IF/00129/2014 and CEEIND/02484/2018 granted to VF, and postdoc fellowship SFRH/BPD/108779/2015 granted to JC.

Author information

Authors and Affiliations

Authors

Contributions

VF and JC conceived the study; VF and MASG provided funding; VF, JS and JC carried out the work; VF performed data analysis and wrote the first version of the manuscript; JS, JC and MASG revised the manuscript.

Corresponding author

Correspondence to Verónica Ferreira.

Ethics declarations

Conflict of interest

We further declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, V., Silva, J., Cornut, J. et al. Microbial colonization and decomposition of commercial tea and native alder leaf litter in temperate streams. Aquat Sci 84, 4 (2022). https://doi.org/10.1007/s00027-021-00834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-021-00834-3

Keywords

Navigation