Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organelle-level precision with next-generation targeting technologies

Abstract

Intracellular organelles are subsystems within a cell, whose activity and chemical composition reflect the metabolic state of live cells. Alterations in cellular homeostasis occurring in disease, ageing and development are also reflected at the level of organelles. By targeting organelles with pharmacological agents and genetic tools, the aim is to improve disease diagnosis and to restore cell function. In this Review, we discuss biological pathways that can be exploited to target the delivery of exogenous cargo with organelle-level precision. We investigate how these pathways can be leveraged for imaging, diagnosis and therapy at the organelle level, and highlight the potential of nucleic acids as delivery systems to target specific organelles in vivo, including the nucleus, lysosomes, secretory organelles and mitochondria. The programmability, modularity and biocompatibility of nucleic acid-based scaffolds make them well suited to accomplishing next-generation targeting with organelle-level resolution in living organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organelles regulate intercellular communication.
Fig. 2: Exploiting biological pathways to access the nucleus and lysosome.
Fig. 3: Exploiting biological pathways to access secretory organelles and mitochondria.
Fig. 4: Nucleic acids for organelle-precision delivery.
Fig. 5: DNA nanodevices can be targeted to specific organelles.

Similar content being viewed by others

References

  1. Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).

    Article  CAS  Google Scholar 

  2. Mullock, B. M. & Luzio, J. P. Theory of Organelle Biogenesis: a Historical Perspective — Madame Curie Bioscience Database (National Center for Biotechnology Information, 2013).

  3. Eguchi, S. & Rizzo, V. Organelles in health and diseases. Clin. Sci. 131, 1–2 (2017).

    Article  Google Scholar 

  4. Trivedi, P. C., Bartlett, J. J. & Pulinilkunnil, T. Lysosomal biology and function: modern view of cellular debris bin. Cells 9, 1131 (2020).

    Article  CAS  Google Scholar 

  5. Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).

    Article  CAS  Google Scholar 

  6. Huang, S. & Wang, Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Research 6, 2050 (2017).

    Article  CAS  Google Scholar 

  7. Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    Article  CAS  Google Scholar 

  8. Leibiger, I. B., Leibiger, B. & Berggren, P.-O. Insulin signaling in the pancreatic β-cell. Annu. Rev. Nutr. 28, 233–251 (2008).

    Article  CAS  Google Scholar 

  9. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    Article  CAS  Google Scholar 

  10. Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).

    Article  CAS  Google Scholar 

  11. Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 86, 25–88 (2006).

    Article  CAS  Google Scholar 

  12. Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  Google Scholar 

  13. Yu, S. B. & Pekkurnaz, G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922–3941 (2018).

    Article  CAS  Google Scholar 

  14. Adler, K. B., Tuvim, M. J. & Dickey, B. F. Regulated mucin secretion from airway epithelial cells. Front. Endocrinol. 4, 129 (2013).

    Article  Google Scholar 

  15. Mazzone, M. et al. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J. Cell Sci. 117, 6275–6287 (2004).

    Article  CAS  Google Scholar 

  16. Herst, P. M., Dawson, R. H. & Berridge, M. V. Intercellular communication in tumor biology: a role for mitochondrial transfer. Front. Oncol. 8, 344 (2018).

    Article  Google Scholar 

  17. Tirziu, D., Giordano, F. J. & Simons, M. Cell communications in the heart. Circulation 122, 928–937 (2010).

    Article  Google Scholar 

  18. Garden, G. A. & La Spada, A. R. Intercellular (mis)communication in neurodegenerative disease. Neuron 73, 886–901 (2012).

    Article  CAS  Google Scholar 

  19. Galluzzi, L., Kepp, O., Trojel-Hansen, C. & Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207 (2012).

    Article  CAS  Google Scholar 

  20. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  Google Scholar 

  21. Zhang, L., Sheng, R. & Qin, Z. The lysosome and neurodegenerative diseases. Acta Biochim. Biophys. Sin. 41, 437–445 (2009).

    Article  CAS  Google Scholar 

  22. Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).

    Article  CAS  Google Scholar 

  23. Yoshida, H. ER stress and diseases. FEBS J. 274, 630–658 (2007).

    Article  CAS  Google Scholar 

  24. Hong, J., Kim, K., Kim, J.-H. & Park, Y. The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int. J. Vasc. Med. 2017, 2049217 (2017).

    Google Scholar 

  25. Ozcan, L. & Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012).

    Article  CAS  Google Scholar 

  26. Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).

    Article  CAS  Google Scholar 

  27. Mothes, W., Sherer, N. M., Jin, J. & Zhong, P. Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010).

    Article  CAS  Google Scholar 

  28. Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  Google Scholar 

  29. McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).

    Article  CAS  Google Scholar 

  30. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    Article  CAS  Google Scholar 

  31. Meier, O. et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131 (2002).

    Article  CAS  Google Scholar 

  32. Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).

    Article  CAS  Google Scholar 

  33. Panjwani, A. et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 10, e1004294 (2014).

    Article  CAS  Google Scholar 

  34. Dupzyk, A. & Tsai, B. How polyomaviruses exploit the ERAD machinery to cause infection. Viruses 8, 242 (2016).

    Article  Google Scholar 

  35. Cohen, S., Au, S. & Panté, N. How viruses access the nucleus. Biochim. Biophys. Acta 1813, 1634–1645 (2011).

    Article  CAS  Google Scholar 

  36. Goswami, R. et al. Gene therapy leaves a vicious cycle. Front. Oncol. 9, 297 (2019).

    Article  Google Scholar 

  37. Biagioni, A. et al. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J. Biol. Eng. 12, 33 (2018).

    Article  CAS  Google Scholar 

  38. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015). In this paper, AAV delivery vehicles were leveraged for Cas9-mediated in vivo genome editing.

    Article  CAS  Google Scholar 

  39. Ramasamy, M. N. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396, 1979–1993 (2021).

    Article  Google Scholar 

  40. News In Brief: First CRISPR therapy dosed. Nat. Biotechnol. 38, 382 (2020).

  41. Shahryari, A. et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10, 868 (2019).

    Article  CAS  Google Scholar 

  42. Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    Article  CAS  Google Scholar 

  43. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    Article  CAS  Google Scholar 

  44. Maggio, I., Liu, J., Janssen, J. M., Chen, X. & Gonçalves, M. A. F. V. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci. Rep. 6, 37051 (2016).

    Article  CAS  Google Scholar 

  45. Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).

    Article  CAS  Google Scholar 

  46. Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    Article  CAS  Google Scholar 

  47. Gong, H. et al. Method for dual viral vector mediated CRISPR-Cas9 gene disruption in primary human endothelial cells. Sci. Rep. 7, 42127 (2017).

    Article  CAS  Google Scholar 

  48. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  Google Scholar 

  49. Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021). This paper describes the optimization of genome editors with nuclear localization signals to improve genome editing efficiency in vivo.

    Article  CAS  Google Scholar 

  50. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  Google Scholar 

  51. Tachibana, R. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv. Drug Deliv. Rev. 52, 219–226 (2001).

    Article  CAS  Google Scholar 

  52. Ma, X., Gong, N., Zhong, L., Sun, J. & Liang, X.-J. Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97, 10–21 (2016).

    Article  CAS  Google Scholar 

  53. Kang, B., Mackey, M. A. & El-Sayed, M. A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519 (2010).

    Article  CAS  Google Scholar 

  54. Zelmer, C. et al. Organelle-specific targeting of polymersomes into the cell nucleus. Proc. Natl Acad. Sci. USA 117, 2770–2778 (2020).

    Article  CAS  Google Scholar 

  55. Pan, L. et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 5722–5725 (2012).

    Article  CAS  Google Scholar 

  56. Vivès, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  Google Scholar 

  57. Boustany, R.-M. N. Lysosomal storage diseases — the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    Article  CAS  Google Scholar 

  58. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  Google Scholar 

  59. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  Google Scholar 

  60. Deduve, C. From cytases to lysosomes. Fed. Proc. 23, 1045–1049 (1964).

    CAS  Google Scholar 

  61. Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    Article  CAS  Google Scholar 

  62. Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  Google Scholar 

  63. Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).

    Article  CAS  Google Scholar 

  64. Peake, K. B. & Vance, J. E. Defective cholesterol trafficking in Niemann–Pick C-deficient cells. FEBS Lett. 584, 2731–2739 (2010).

    Article  CAS  Google Scholar 

  65. Bach, G., Friedman, R., Weissmann, B. & Neufeld, E. F. The defect in the Hurler and Scheie syndromes: deficiency of α-l-iduronidase. Proc. Natl Acad. Sci. USA 69, 2048–2051 (1972).

    Article  CAS  Google Scholar 

  66. Fratantoni, J. C., Hall, C. W. & Neufeld, E. F. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 162, 570–572 (1968).

    Article  CAS  Google Scholar 

  67. Varki, A. & Kornfeld, S. Structural studies of phosphorylated high mannose-type oligosaccharides. J. Biol. Chem. 255, 10847–10858 (1980).

    Article  CAS  Google Scholar 

  68. Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 324, 1464–1470 (1991). This paper describes the clinical efficacy of the first enzyme replacement therapy targeting lysosomal dysfunction by leveraging the mannose-6-phosphate receptor pathway.

    Article  CAS  Google Scholar 

  69. Solomon, M. & Muro, S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev. 118, 109–134 (2017).

    Article  CAS  Google Scholar 

  70. Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3, 954–966 (2002).

    Article  CAS  Google Scholar 

  71. Pardridge, W. M. Blood–brain barrier delivery. Drug Discov. Today 12, 54–61 (2007).

    Article  CAS  Google Scholar 

  72. Urayama, A., Grubb, J. H., Sly, W. S. & Banks, W. A. Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood–brain barrier in the newborn mouse. Mol. Ther. 16, 1261–1266 (2008).

    Article  CAS  Google Scholar 

  73. Tian, W. et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun. 10, 1785 (2019).

    Article  CAS  Google Scholar 

  74. LeBowitz, J. H. et al. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc. Natl Acad. Sci. USA 101, 3083–3088 (2004).

    Article  CAS  Google Scholar 

  75. Prince, W. S. et al. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the receptor-associated protein (RAP) and α-l-iduronidase or acid α-glucosidase. J. Biol. Chem. 279, 35037–35046 (2004).

    Article  CAS  Google Scholar 

  76. Boado, R. J., Lu, J. Z., Hui, E. K.-W., Sumbria, R. K. & Pardridge, W. M. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol. Bioeng. 110, 1456–1465 (2013).

    Article  CAS  Google Scholar 

  77. Do, M. A., Levy, D., Brown, A., Marriott, G. & Lu, B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci. Rep. 9, 17274 (2019).

    Article  CAS  Google Scholar 

  78. Muro, S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv. Transl. Res. 2, 169–186 (2012).

    Article  CAS  Google Scholar 

  79. Gregoriadis, G. & Ryman, B. E. Lysosomal localization of β-fructofuranosidase-containing liposomes injected into rats. Some implications in the treatment of genetic disorders. Biochem. J. 129, 123–133 (1972).

    Article  CAS  Google Scholar 

  80. Steger, L. D. & Desnick, R. J. Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim. Biophys. Acta 464, 530–546 (1977).

    Article  CAS  Google Scholar 

  81. Baltazar, G. C. et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS ONE 7, e49635 (2012).

    Article  CAS  Google Scholar 

  82. Dekiwadia, C. D., Lawrie, A. C. & Fecondo, J. V. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. J. Pept. Sci. 18, 527–534 (2012).

    Article  CAS  Google Scholar 

  83. Muro, S. et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116, 1599–1609 (2003).

    Article  CAS  Google Scholar 

  84. Muro, S., Schuchman, E. H. & Muzykantov, V. R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol. Ther. 13, 135–141 (2006).

    Article  CAS  Google Scholar 

  85. Garnacho, C. et al. Delivery of acid sphingomyelinase in normal and Niemann–Pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J. Pharmacol. Exp. Ther. 325, 400–408 (2008).

    Article  CAS  Google Scholar 

  86. Yin, H. & Flynn, A. D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76 (2016).

    Article  CAS  Google Scholar 

  87. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  CAS  Google Scholar 

  88. Shen, Y. et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 8, 916–931 (2018).

    CAS  Google Scholar 

  89. Zheng, G., Chen, J., Li, H. & Glickson, J. D. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc. Natl Acad. Sci. USA 102, 17757–17762 (2005).

    Article  CAS  Google Scholar 

  90. Domenech, M., Marrero-Berrios, I., Torres-Lugo, M. & Rinaldi, C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7, 5091–5101 (2013).

    Article  CAS  Google Scholar 

  91. Schneider, R. et al. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg. Med. Chem. 13, 2799–2808 (2005).

    Article  CAS  Google Scholar 

  92. Tian, J. et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013).

    Article  CAS  Google Scholar 

  93. Marques, E. T. A. et al. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J. Biol. Chem. 278, 37926–37936 (2003).

    Article  CAS  Google Scholar 

  94. Jiang, D.-B. et al. Recombinant DNA vaccine of Hantavirus Gn and LAMP1 induced long-term immune protection in mice. Antivir. Res. 138, 32–39 (2017).

    Article  CAS  Google Scholar 

  95. Ji, H. et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther. 10, 2727–2740 (1999).

    Article  CAS  Google Scholar 

  96. Farhan, H. & Rabouille, C. Signalling to and from the secretory pathway. J. Cell Sci. 124, 171–180 (2011).

    Article  CAS  Google Scholar 

  97. Spang, A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb. Persp. Biol. 5, a013391 (2013).

    Google Scholar 

  98. Jackson, L. P. et al. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23, 1255–1262 (2012).

    Article  CAS  Google Scholar 

  99. Boelens, J., Lust, S., Offner, F., Bracke, M. E. & Vanhoecke, B. W. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21, 215–226 (2007).

    CAS  Google Scholar 

  100. Schröder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  CAS  Google Scholar 

  101. Yen, C.-L. et al. Targeted delivery of curcumin rescues endoplasmic reticulum-retained mutant NOX2 protein and avoids leukocyte apoptosis. J. Immunol. 202, 3394–3403 (2019).

    Article  CAS  Google Scholar 

  102. Wang, G., Norton, A. S., Pokharel, D., Song, Y. & Hill, R. A. KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine 9, 366–374 (2013).

    Article  CAS  Google Scholar 

  103. Perez-Trujillo, J. J. et al. DNA vaccine encoding human papillomavirus antigens flanked by a signal peptide and a KDEL sequence induces a potent therapeutic antitumor effect. Oncol. Lett. 13, 1569–1574 (2017).

    Article  CAS  Google Scholar 

  104. Sneh-Edri, H., Likhtenshtein, D. & Stepensky, D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8, 1266–1275 (2011).

    Article  CAS  Google Scholar 

  105. Wales, R., Chaddock, J. A., Roberts, L. M. & Lord, J. M. Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp. Cell Res. 203, 1–4 (1992).

    Article  CAS  Google Scholar 

  106. Jiao, P., Zhang, J., Dong, Y., Wei, D. & Ren, Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Appl. Microbiol. Biotechnol. 102, 9585–9594 (2018).

    Article  CAS  Google Scholar 

  107. Abraham, O. et al. Control of protein trafficking by reversible masking of transport signals. Mol. Biol. Cell 27, 1310–1319 (2016). This paper describes a pioneering method of delivering exogenous material to the ER and other intracellular compartments by reversibly unmasking organelle targeting signals.

    Article  CAS  Google Scholar 

  108. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    Article  CAS  Google Scholar 

  109. Wernick, N. L. B., Chinnapen, D. J.-F., Cho, J. A. & Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2, 310–325 (2010).

    Article  CAS  Google Scholar 

  110. Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 (1998).

    Article  CAS  Google Scholar 

  111. Lencer, W. I. et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131, 951–962 (1995).

    Article  CAS  Google Scholar 

  112. Johannes, L., Tenza, D., Antony, C. & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).

    Article  CAS  Google Scholar 

  113. Yu, M. & Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524–2532 (2005).

    Article  CAS  Google Scholar 

  114. Tarragó-Trani, M. T. & Storrie, B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv. Drug Deliv. Rev. 59, 782–797 (2007).

    Article  CAS  Google Scholar 

  115. Haicheur, N. et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J. Immunol. 165, 3301–3308 (2000).

    Article  CAS  Google Scholar 

  116. Haicheur, N. et al. The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responses associated with a Th1-dominant polarization. Int. Immunol. 15, 1161–1171 (2003).

    Article  CAS  Google Scholar 

  117. Engedal, N., Skotland, T., Torgersen, M. L. & Sandvig, K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb. Biotechnol. 4, 32–46 (2011).

    Article  CAS  Google Scholar 

  118. Luginbuehl, V., Meier, N., Kovar, K. & Rohrer, J. Intracellular drug delivery: potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol. Adv. 36, 613–623 (2018).

    Article  CAS  Google Scholar 

  119. Tarragó-Trani, M. T., Jiang, S., Harich, K. C. & Storrie, B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem. Photobiol. 82, 527–537 (2006).

    Article  CAS  Google Scholar 

  120. Wang, J., Fang, X. & Liang, W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 6, 5018–5030 (2012).

    Article  CAS  Google Scholar 

  121. Pollock, S. et al. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J. 24, 1866–1878 (2010).

    Article  CAS  Google Scholar 

  122. Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S.-L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by cryo-EM. eLife https://doi.org/10.7554/eLife.31054 (2017).

    Article  Google Scholar 

  123. Shi, Y., Wang, S., Wu, J., Jin, X. & You, J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2020.11.054 (2020).

    Article  Google Scholar 

  124. Zhou, Y. et al. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy. J. Med. Chem. 61, 3952–3961 (2018).

    Article  CAS  Google Scholar 

  125. Alam, P. et al. Red AIE-active fluorescent probes with tunable organelle-specific targeting. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909268 (2020).

    Article  Google Scholar 

  126. Zhang, H. et al. Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J. Mater. Chem. B 1, 5450 (2013).

    Article  CAS  Google Scholar 

  127. Ghosh, C., Nandi, A. & Basu, S. Lipid nanoparticle-mediated induction of endoplasmic reticulum stress in cancer cells. ACS Appl. Bio Mater. 2, 3992–4001 (2019).

    Article  CAS  Google Scholar 

  128. Deng, H. et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 20, 1928–1933 (2020).

    Article  CAS  Google Scholar 

  129. Pieczenik, S. R. & Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83, 84–92 (2007).

    Article  CAS  Google Scholar 

  130. Smith, R. A. J., Hartley, R. C., Cochemé, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012).

    Article  CAS  Google Scholar 

  131. Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem. 123, 1010–1016 (1998).

    Article  CAS  Google Scholar 

  132. Hachiya, N. et al. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 (1994).

    Article  CAS  Google Scholar 

  133. Jean, S. R., Ahmed, M., Lei, E. K., Wisnovsky, S. P. & Kelley, S. O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res. 49, 1893–1902 (2016).

    Article  CAS  Google Scholar 

  134. Wasilenko, S. T., Stewart, T. L., Meyers, A. F. A. & Barry, M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl Acad. Sci. USA 100, 14345–14350 (2003).

    Article  CAS  Google Scholar 

  135. Boya, P. et al. Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta 1659, 178–189 (2004).

    Article  CAS  Google Scholar 

  136. Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS  Google Scholar 

  137. Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).

    CAS  Google Scholar 

  138. Del Gaizo, V., MacKenzie, J. A. & Payne, R. M. Targeting proteins to mitochondria using TAT. Mol. Genet. Metab. 80, 170–180 (2003).

    Article  CAS  Google Scholar 

  139. Yousif, L. F., Stewart, K. M., Horton, K. L. & Kelley, S. O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10, 2081–2088 (2009).

    Article  CAS  Google Scholar 

  140. Jiang, L. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52, 126–139 (2015).

    Article  CAS  Google Scholar 

  141. Agemy, L. et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl Acad. Sci. USA 108, 17450–17455 (2011).

    Article  CAS  Google Scholar 

  142. Fonseca, S. B. et al. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol. 18, 445–453 (2011).

    Article  CAS  Google Scholar 

  143. Wisnovsky, S. P. et al. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol. 20, 1323–1328 (2013).

    Article  CAS  Google Scholar 

  144. Gao, P., Pan, W., Li, N. & Tang, B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl. Mater. Interfaces 11, 26529–26558 (2019).

    Article  CAS  Google Scholar 

  145. Smith, R. A., Porteous, C. M., Coulter, C. V. & Murphy, M. P. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263, 709–716 (1999).

    Article  CAS  Google Scholar 

  146. Smith, R. A. J., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).

    Article  CAS  Google Scholar 

  147. Sharma, A. et al. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 13, 239–252 (2012).

    Article  CAS  Google Scholar 

  148. Marrache, S. & Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA 109, 16288–16293 (2012).

    Article  CAS  Google Scholar 

  149. Boddapati, S. V., D’Souza, G. G. M., Erdogan, S., Torchilin, V. P. & Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8, 2559–2563 (2008).

    Article  CAS  Google Scholar 

  150. Marrache, S. & Dhar, S. The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. 6, 1832–1845 (2015).

    Article  CAS  Google Scholar 

  151. Zhou, W. et al. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. Nanoscale 9, 17044–17053 (2017).

    Article  CAS  Google Scholar 

  152. Zhou, J. et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34, 3626–3638 (2013).

    Article  CAS  Google Scholar 

  153. Panagiotaki, K. N. et al. A triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient Co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals 10, 91 (2017).

    Article  CAS  Google Scholar 

  154. Yu, Z., Sun, Q., Pan, W., Li, N. & Tang, B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano 9, 11064–11074 (2015).

    Article  CAS  Google Scholar 

  155. Jung, H. S. et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J. Am. Chem. Soc. 137, 3017–3023 (2015).

    Article  CAS  Google Scholar 

  156. Weiss, M. J. et al. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl Acad. Sci. USA 84, 5444–5448 (1987).

    Article  CAS  Google Scholar 

  157. Weissig, V. et al. DQAsomes: a novel potential drug and gene delivery system made from DequaliniumTM. Pharm. Res. 15, 334–337 (1998).

    Article  CAS  Google Scholar 

  158. Teixeira, J. et al. Development of a mitochondriotropic antioxidant based on caffeic acid: proof of concept on cellular and mitochondrial oxidative stress models. J. Med. Chem. 60, 7084–7098 (2017).

    Article  CAS  Google Scholar 

  159. Manolis, A. S. et al. Mitochondrial dysfunction in cardiovascular disease: current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 41, 275–313 (2021).

    Article  CAS  Google Scholar 

  160. Gane, E. J. et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).

    Article  CAS  Google Scholar 

  161. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010).

    Article  Google Scholar 

  162. Saad, A. et al. Phase 2a clinical trial of mitochondrial protection (elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis. Circ. Cardiovasc. Interv. 10, e005487 (2017).

    Article  CAS  Google Scholar 

  163. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  CAS  Google Scholar 

  164. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  Google Scholar 

  165. Carlson, R. The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091–1094 (2009).

    Article  CAS  Google Scholar 

  166. Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  167. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  Google Scholar 

  168. Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    Article  CAS  Google Scholar 

  169. Veetil, A. T. et al. DNA-based fluorescent probes of NOS2 activity in live brains. Proc. Natl Acad. Sci. USA 117, 14694–14702 (2020). This paper shows how DNA nanodevices are targeted with organelle-level precision specifically in microglia of live zebrafish and that the DNA sequence can be modified to either trigger or evade the immune response.

    Article  CAS  Google Scholar 

  170. Krishnan, Y., Zou, J. & Jani, M. S. Quantitative imaging of biochemistry in situ and at the nanoscale. ACS Cent. Sci. 6, 1938–1954 (2020).

    Article  CAS  Google Scholar 

  171. Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem. Rev. 119, 6459–6506 (2019).

    Article  CAS  Google Scholar 

  172. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  173. Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021). This paper describes DNA-based immune cell-engaging particles that prime T cell activation in vivo by exploiting the stoichiometry of DNA hybridization to display precise numbers of immune stimulatory ligands.

    Article  CAS  Google Scholar 

  174. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  Google Scholar 

  175. Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 11, 1112–1119 (2016). In this paper, the modularity, stoichiometry, structural and spatial precision offered by a DNA icosahedron are leveraged to modulate its trafficking selectively within cells.

    Article  CAS  Google Scholar 

  176. Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. 52, 6854–6857 (2013).

    Article  CAS  Google Scholar 

  177. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  178. Famulok, M., Hartig, J. S. & Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107, 3715–3743 (2007).

    Article  CAS  Google Scholar 

  179. Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  Google Scholar 

  180. Cho, E. J., Lee, J.-W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    Article  CAS  Google Scholar 

  181. Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    Article  CAS  Google Scholar 

  182. Halder, S. & Krishnan, Y. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices. Nanoscale 7, 10008–10012 (2015).

    Article  CAS  Google Scholar 

  183. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  Google Scholar 

  184. Koshkin, A. A. et al. LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    Article  CAS  Google Scholar 

  185. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    Article  CAS  Google Scholar 

  186. Kaur, H., Babu, B. R. & Maiti, S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem. Rev. 107, 4672–4697 (2007).

    Article  CAS  Google Scholar 

  187. Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    Article  CAS  Google Scholar 

  188. Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    Article  CAS  Google Scholar 

  189. Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    Article  CAS  Google Scholar 

  190. Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article  CAS  Google Scholar 

  191. Hivare, P., Rajwar, A., Gupta, S. & Bhatia, D. Spatiotemporal dynamics of endocytic pathways adapted by small DNA nanocages in model neuroblastoma cell-derived differentiated neurons. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.0c01668 (2021).

    Article  Google Scholar 

  192. Bagasra, O. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat. Protoc. 2, 2782–2795 (2007).

    Article  CAS  Google Scholar 

  193. Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).

    Article  CAS  Google Scholar 

  194. Gough, P. J. & Gordon, S. The role of scavenger receptors in the innate immune system. Microbes Infect. 2, 305–311 (2000).

    Article  CAS  Google Scholar 

  195. Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).

    Article  CAS  Google Scholar 

  196. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  Google Scholar 

  197. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019). This paper describes a pioneering method to quantify two ions simultaneously in the same organelle to chemically resolve lysosomes in live cells, yielding a potential diagnostic for lysosomal diseases.

    Article  CAS  Google Scholar 

  198. Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    Article  CAS  Google Scholar 

  199. Thekkan, S. et al. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 15, 1165–1172 (2019). This paper outlines how DNA nanodevices can be targeted to phagosomes of immune cells derived from human blood and from multiple tissues of mice.

    Article  CAS  Google Scholar 

  200. Jani, M. S., Zou, J., Veetil, A. T. & Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 16, 660–666 (2020).

    Article  CAS  Google Scholar 

  201. Dan, K., Veetil, A. T., Chakraborty, K. & Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14, 252–259 (2019).

    Article  CAS  Google Scholar 

  202. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  CAS  Google Scholar 

  203. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    Article  CAS  Google Scholar 

  204. Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 6, e28862 (2017).

    Article  Google Scholar 

  205. Chakraborty, K. et al. Tissue specific targeting of DNA nanodevices in a multicellular living organism. eLife 10, e67830 (2021) This article demonstrates that DNA nanodevices can be tissue-specifically targeted with organelle-level precision in nematodes by engaging a synthetic, tissue-specifically expressed endocytic receptor.

    Article  CAS  Google Scholar 

  206. Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).

    Article  CAS  Google Scholar 

  207. Taguchi, T. Emerging roles of recycling endosomes. J. Biochem. 153, 505–510 (2013).

    Article  CAS  Google Scholar 

  208. Goldenring, J. R. Recycling endosomes. Curr. Opin. Cell Biol. 35, 117–122 (2015).

    Article  CAS  Google Scholar 

  209. Mellman, I. & Yarden, Y. Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949 (2013).

    Article  CAS  Google Scholar 

  210. Howe, E. N. et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat. Commun. 11, 3017 (2020).

    Article  CAS  Google Scholar 

  211. Schreij, A. M. A., Fon, E. A. & McPherson, P. S. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol. Life Sci. 73, 1529–1545 (2016).

    Article  CAS  Google Scholar 

  212. Vale-Costa, S. & Amorim, M. J. Recycling endosomes and viral infection. Viruses 8, 64 (2016).

    Article  CAS  Google Scholar 

  213. De Castro Martin, I. F. et al. Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat. Commun. 8, 1396 (2017).

    Article  CAS  Google Scholar 

  214. Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665 (2019).

    Article  CAS  Google Scholar 

  215. Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    Article  CAS  Google Scholar 

  216. Aisen, P. & Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 49, 357–393 (1980).

    Article  CAS  Google Scholar 

  217. Mayle, K. M., Le, A. M. & Kamei, D. T. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta 1820, 264–281 (2012).

    Article  CAS  Google Scholar 

  218. Saminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021).

    Article  CAS  Google Scholar 

  219. Glick, B. S. & Nakano, A. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 25, 113–132 (2009).

    Article  CAS  Google Scholar 

  220. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    Article  CAS  Google Scholar 

  221. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  222. Brayman, M., Thathiah, A. & Carson, D. D. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2, 4 (2004).

    Article  Google Scholar 

  223. Ferreira, C. S. M., Cheung, M. C., Missailidis, S., Bisland, S. & Gariépy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37, 866–876 (2009).

    Article  CAS  Google Scholar 

  224. Bretscher, M. S. Membrane structure: some general principles. Science 181, 622–629 (1973).

    Article  CAS  Google Scholar 

  225. Park, J. et al. Engineering the surface of therapeutic “living” cells. Chem. Rev. 118, 1664–1690 (2018).

    Article  CAS  Google Scholar 

  226. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  227. Niemeyer, C. M. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).

    Article  CAS  Google Scholar 

  228. Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  Google Scholar 

  229. Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R. & Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem. Int. Ed. 45, 896–901 (2006).

    Article  CAS  Google Scholar 

  230. Charter, N. W., Mahal, L. K., Koshland, D. E. & Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 277, 9255–9261 (2002).

    Article  CAS  Google Scholar 

  231. Todhunter, M. E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods 12, 975–981 (2015).

    Article  CAS  Google Scholar 

  232. You, M. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 12, 453–459 (2017).

    Article  CAS  Google Scholar 

  233. Jin, C. et al. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat. Commun. 10, 2704 (2019).

    Article  CAS  Google Scholar 

  234. Kwak, M. & Herrmann, A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5745–5755 (2011).

    Article  CAS  Google Scholar 

  235. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    Article  CAS  Google Scholar 

  236. Mali, P. et al. Barcoding cells using cell-surface programmable DNA-binding domains. Nat. Methods 10, 403–406 (2013).

    Article  CAS  Google Scholar 

  237. Zhu, G. et al. Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 52, 5490–5496 (2013).

    Article  CAS  Google Scholar 

  238. Li, L. et al. Aptamer displacement reaction from live-cell surfaces and its applications. J. Am. Chem. Soc. 141, 17174–17179 (2019).

    Article  CAS  Google Scholar 

  239. Liu, H., Kwong, B. & Irvine, D. J. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew. Chem. Int. Ed. 50, 7052–7055 (2011).

    Article  CAS  Google Scholar 

  240. Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660 (2013).

    Article  CAS  Google Scholar 

  241. Underhill, D. M. Macrophage recognition of zymosan particles. J. Endotoxin Res. 9, 176–180 (2003).

    Article  CAS  Google Scholar 

  242. Locy, H. et al. Immunomodulation of the tumor microenvironment: turn foe into friend. Front. Immunol. 9, 2909 (2018).

    Article  CAS  Google Scholar 

  243. Xiao, Y. et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 39, 423–437.e7 (2021).

    Article  CAS  Google Scholar 

  244. Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00988-z (2021).

    Article  Google Scholar 

  245. Mazzulli, J. R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl Acad. Sci. USA 113, 1931–1936 (2016).

    Article  CAS  Google Scholar 

  246. Kobayashi, T. et al. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat. Commun. 10, 5446 (2019).

    Article  CAS  Google Scholar 

  247. Marques, A. R. A. et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 16, 811–825 (2020).

    Article  CAS  Google Scholar 

  248. Chen, C. B. et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105, 15908–15913 (2008).

    Article  CAS  Google Scholar 

  249. Bendorius, M. et al. The mitochondrion-lysosome axis in adaptive and innate immunity: effect of lupus regulator peptide P140 on mitochondria autophagy and NETosis. Front. Immunol. 9, 2158 (2018).

    Article  CAS  Google Scholar 

  250. Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. & Ruckenstuhl, C. The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).

    Article  CAS  Google Scholar 

  251. Conlan, R. S., Pisano, S., Oliveira, M. I., Ferrari, M. & Mendes Pinto, I. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med. 23, 636–650 (2017).

    Article  CAS  Google Scholar 

  252. Sundaram, P., Kurniawan, H., Byrne, M. E. & Wower, J. Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci. 48, 259–271 (2013).

    Article  CAS  Google Scholar 

  253. Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    Article  CAS  Google Scholar 

  254. Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    Article  Google Scholar 

  255. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  Google Scholar 

  256. Kirchenbaum, G., Hanson, J., Roen, D. & Lehmann, P. Detection of antigen-specific T cell lineages and effector functions based on secretory signature. J. Immunol. Sci. 3, 14–20 (2019).

    Article  Google Scholar 

  257. Koves, T. R. et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am. J. Physiol. Cell Physiol. 288, C1074–C1082 (2005).

    Article  CAS  Google Scholar 

  258. Momcilovic, M. et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 575, 380–384 (2019).

    Article  CAS  Google Scholar 

  259. Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics. Hum. Genet. 13, 307–335 (2012).

    Article  CAS  Google Scholar 

  260. Hirota, J. & Shimizu, S. in The Laboratory Mouse 709–725 (Elsevier, 2012).

  261. Franz, W. M., Rothmann, T., Frey, N. & Katus, H. A. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc. Res. 35, 560–566 (1997).

    Article  CAS  Google Scholar 

  262. Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).

    Article  CAS  Google Scholar 

  263. Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. https://doi.org/10.3402/nano.v3i0.18496 (2012).

    Article  Google Scholar 

  264. Kang, K. W. In vivo imaging of 18F-aptide as a fibronectin extra domain B (EDB) targeting agent. J. Nucl. Med. 54, 555–555 (2013).

    Google Scholar 

  265. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    Article  CAS  Google Scholar 

  266. Wang, Y. et al. Lysosome-targeting fluorogenic probe for cathepsin B imaging in living cells. Anal. Chem. 88, 12403–12410 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Verenice Noyola for scientific illustrations. This work was supported by the Women’s Board of the University of Chicago; by grant number FA9550-19-0003 from AFOSR, by NIH grants R21NS114428 and 1R01NS112139-01A1, by the Mergel Funsky Award, by the Zhong Ziyi Educational Foundation Award and by the Ono Pharma Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.S., M.Z., P.A. and Y.K. developed the review outline, wrote the manuscript and incorporated figures and references.

Corresponding author

Correspondence to Yamuna Krishnan.

Ethics declarations

Competing interests

Y.K. is the co-founder and Chief Science Officer of Esya Inc., which uses DNA reporters. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saminathan, A., Zajac, M., Anees, P. et al. Organelle-level precision with next-generation targeting technologies. Nat Rev Mater 7, 355–371 (2022). https://doi.org/10.1038/s41578-021-00396-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00396-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research