Skip to main content
Log in

On the Underlying Drag-Reduction Mechanisms of Flow-Control Strategies in a Transitional Channel Flow: Temporal Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The underlying mechanisms of three different flow-control strategies on drag reduction in a channel flow are investigated by direct numerical simulations at friction Reynolds numbers ranging from 65 to 85. These strategies include the addition of long-chain polymers, the incorporation of slip surfaces, and the application of an external body force. While it has been believed that such methods lead to a skin-friction reduction by controlling near-wall flow structures, the underlying mechanisms at play are still not as clear. In this study, a temporal analysis is employed to elucidate underlying drag-reduction mechanisms among these methods. The analysis is based on the lifetime of intermittent phases represented by the active and hibernating phases of a minimal turbulent channel flow (Xi and Graham, Phys Rev Lett 2010). At a similar amount of drag reduction, the polymer and slip methods show a similar mechanism, while the body force method is different. The polymers and slip surfaces cause hibernating phases to happen more frequently, while the duration of active phases is decreased. However, the body forces cause hibernating phases to happen less frequently but prolong its duration to achieve a comparable amount of drag reduction. A possible mechanism behind the body force method is associated with its unique roller-like vortical structures formed near the wall. These structures appear to prevent interactions between inner and outer regions by which hibernating phases are prolonged. It should motivate adaptive flow-control strategies to exploit the distinct underlying mechanisms for robust control of turbulent drag at low Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Agrawal, R., Ng, H.-H., Davis, E.A., Park, J.S., Graham, M.D., Dennis, D.J., Poole, R.J.: Low- and high-drag intermittencies in turbulent channel flows. Entropy 22(10), 1126 (2020)

    Article  Google Scholar 

  • Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12(3), 631–649 (2000)

    Article  MATH  Google Scholar 

  • Berman, N.S.: Drag reduction by polymers. Annu. Rev. Fluid Mech. 10(1), 47–64 (1978)

    Article  MATH  Google Scholar 

  • Chai, C., Song, B.: Stability of slip channel flow revisited. Phys. Fluids 31(8), 084105 (2019)

    Article  Google Scholar 

  • Chen, X., Yao, J., Hussain, F.: Theoretical framework for energy flux analysis of channels under drag control. Phys. Rev. Fluids 6(1), 013902 (2021)

    Article  Google Scholar 

  • Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MATH  Google Scholar 

  • Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  • Choi, J.-I., Xu, C.-X., Sung, H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)

    Article  Google Scholar 

  • Coller, B.D., Holmes, P., Lumley, J.L.: Interaction of adjacent bursts in the wall region. Phys. Fluids 6(2), 954–961 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, E., Sareen, A., Mirfendereski, S., Longmire, E., Park, J. S.: Characterization of Low-drag Events at a Moderate Reynolds Number of \({R}e_{\tau } = 700\),” Bulletin of the American Physical Society (2020)

  • Davis, E.A., Park, J.S.: Dynamics of laminar and transitional flows over slip surfaces: effects on the laminar-turbulent separatrix. J. Fluid Mech. 894, A16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, E.A., Mirfendereski, S., Park, J.S.: On the comparison of flow physics between minimal and extended flow units in turbulent channels. Fluids 6(5), 192 (2021)

    Article  Google Scholar 

  • Endo, T., Kasagi, N., Suzuki, Y.: Feedback control of wall turbulence with wall deformation. Int. J. Heat Fluid Flow 21(5), 568–575 (2000)

    Article  Google Scholar 

  • Flyvbjerg, H., Petersen, H.G.: Error estimates on averages of correlated data. J. Chem. Phys. 91(1), 461–466 (1989)

    Article  MathSciNet  Google Scholar 

  • Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73–L76 (2002)

    Article  MATH  Google Scholar 

  • Fukagata, K., Kasagi, N., Koumoutsakos, P.: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18(5), 051703 (2006)

    Article  Google Scholar 

  • Gad-el Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369(1940), 1412–1427 (2011)

    Article  Google Scholar 

  • Gatti, D., Cimarelli, A., Hasegawa, Y., Frohnapfel, B., Quadrio, M.: Global energy fluxes in turbulent channels with flow control. J. Fluid Mech. 857, 345–373 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson, J. F.: Channelflow: A Spectral Navier-Stokes Simulator in C++, Tech. Rep., U. New Hampshire, (2012). Channelflow.org

  • Graham, M.D.: Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26(10), 625–656 (2014)

    Article  Google Scholar 

  • Graham, M.D., Floryan, D.: Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Ann. Rev. Fluid Mech. 53, 227–253 (2021)

    Article  MATH  Google Scholar 

  • Hamilton, J.M., Kim, J., Waleffe, F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287(1), 317–348 (1995)

    Article  MATH  Google Scholar 

  • Hunt, J., Durbin, P.: Perturbed vortical layers and shear sheltering. Fluid Dynam. Res. 24(6), 375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez, J., Moin, P.: The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240 (1991)

    Article  MATH  Google Scholar 

  • Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)

    Article  Google Scholar 

  • Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12(12), 3301–3304 (2000)

    Article  MATH  Google Scholar 

  • Karniadakis, G.E., Choi, K.-S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35(1), 45–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kushwaha, A., Park, J.S., Graham, M.D.: Temporal and spatial intermittencies within channel flow turbulence near transition. Phys. Rev. Fluids 2(2), 024603 (2017)

    Article  Google Scholar 

  • Lee, J., Jelly, T.O., Zaki, T.A.: Effect of reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95(2), 277–300 (2015)

    Article  Google Scholar 

  • Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)

    MATH  Google Scholar 

  • Lumley, J., Blossey, P.: Control of turbulence. Annu. Rev. Fluid Mech. 30(1), 311–327 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Mamori, H., Fukagata, K.: Drag reduction effect by a wave-like wall-normal body force in a turbulent channel flow. Phys. Fluids 26(11), 115104 (2014)

    Article  Google Scholar 

  • Min, T., Kim, J.: Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16(7), 55 (2004)

    Article  MATH  Google Scholar 

  • Min, T., Yoo, J.Y., Choi, H., Joseph, D.D.: Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213 (2003)

    Article  MATH  Google Scholar 

  • Park, J.S., Graham, M.D.: Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech. 782, 430–454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Park, H., Park, H., Kim, J.: A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25(11), 110815 (2013)

    Article  Google Scholar 

  • Park, J.S., Shekar, A., Graham, M.D.: Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states. Phys. Rev. Fluids 3(1), 014611 (2018)

    Article  Google Scholar 

  • Patasinski, P.K., Boersma, B.J., Nieuwstadt, F.T.M., Hulsen, M.A., Van den Brule, B.H.A.A., Hunt, J.: Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)

    Article  MATH  Google Scholar 

  • Picella, F., Robinet, J.-C., Cherubini, S.: Laminar-turbulent transition in channel flow with superhydrophobic surfaces modelled as a partial slip wall. J. Fluid Mech. 881, 462–497 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ptasinski, P., Boersma, B., Nieuwstadt, F., Hulsen, M., Van den Brule, B., Hunt, J.: Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251 (2003)

    Article  MATH  Google Scholar 

  • Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251 (2004)

    Article  MATH  Google Scholar 

  • Renard, N., Deck, S.: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23(1), 601–639 (1991)

    Article  Google Scholar 

  • Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42(1), 89–109 (2010)

    Article  Google Scholar 

  • Rowin, W.A., Ghaemi, S.: Streamwise and spanwise slip over a superhydrophobic surface. J. Fluid Mech. 870, 1127–1157 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Ryu, S., Davis, E., Park, J.S., Zhang, H., Yoo, J.Y.: Wall-shear-stress-based conditional sampling analysis of coherent structures in a turbulent boundary layer. J. Fluids Eng. 143(4), 041301 (2021)

    Article  Google Scholar 

  • Seo, J., García-Mayoral, R., Mani, A.: Turbulent flows over superhydrophobic surfaces: Flow-induced capillary waves, and robustness of air-water interfaces. J. Fluid Mech. 835, 45–85 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, C., Metzler, S.: The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27–54 (1983)

    Article  Google Scholar 

  • Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)

    Article  Google Scholar 

  • Tsukahara, T., Seki, Y., Kawamura, H., Tochio, D.: DNS of turbulent channel flow at very low Reynolds Numbers, In: Fourth International Symposium on Turbulence and Shear Flow Phenomena, Begel House Inc. (2005)

  • Waleffe, F.: On a self-sustaining process in shear flows. Phys. Fluids 9(4), 883–900 (1997)

    Article  Google Scholar 

  • Wang, J.-J., Choi, K.-S., Feng, L.-H., Jukes, T.N., Whalley, R.D.: Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 52–78 (2013)

    Article  Google Scholar 

  • Wang, S.-N., Graham, M.D., Hahn, F.J., Xi, L.: Time-series and extended KL analysis of turbulent drag reduction in polymer solutions. AIChE J. 60(4), 1460–1475 (2014)

    Article  Google Scholar 

  • Wang, S.-N., Shekar, A., Graham, M.D.: Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech. 244, 104–122 (2017)

    Article  MathSciNet  Google Scholar 

  • Warholic, M.D., Massah, H., Hanratty, T.J.: Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27(5), 461–472 (1999)

    Article  Google Scholar 

  • Watanabe, K., Yanuar, U., Udagawa, H.: Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 381, 225–238 (1999)

    Article  MATH  Google Scholar 

  • Whalley, R.D., Park, J.S., Kushwaha, A., Dennis, D.J., Graham, M.D., Poole, R.J.: Low-drag events in transitional wall-bounded turbulence. Phys. Rev. Fluids 2(3), 034602 (2017)

    Article  Google Scholar 

  • White, C.M., Mungal, M.G.: Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Xi, L., Graham, M.D.: Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids. Phys. Rev. Lett. 104(21), 218301 (2010)

    Article  Google Scholar 

  • Xi, L., Graham, M.D.: Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421–452 (2010)

    Article  MATH  Google Scholar 

  • Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, L., Xi, L.: Vortex dynamics in low-and high-extent polymer drag reduction regimes revealed by vortex tracking and conformation analysis. Phys. Fluids 31(9), 095103 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The direct numerical simulation code used was developed and distributed by J. Gibson at the University of New Hampshire. The authors also acknowledge the computing facilities used at the Holland Computing Center at the University of Nebraska-Lincoln.

Funding

The authors gratefully acknowledge the financial support from the National Science Foundation through a grant OIA-1832976, the Nebraska EPSCoR FIRST Award supported by the National Science Foundation through a grant OIA-1557417, and the Collaboration Initiative at the University of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogge, A.J., Park, J.S. On the Underlying Drag-Reduction Mechanisms of Flow-Control Strategies in a Transitional Channel Flow: Temporal Approach. Flow Turbulence Combust 108, 1001–1016 (2022). https://doi.org/10.1007/s10494-021-00305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00305-7

Keywords

Navigation