Skip to main content

Advertisement

Log in

Do rusty crayfish (Faxonius rusticus) invasions affect water clarity in north temperate lakes?

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Invasive crayfish can cause shifts in lakes from clear, macrophyte-dominated states to eutrophic, phytoplankton-dominated states because of their burrowing and foraging behavior. While invasive crayfish populations have been linked to declines in water clarity of shallow lakes and wetlands in Asia and Europe, little research has been done on the potential for similar effects of invasive rusty crayfish (Faxonius rusticus) in large temperate lakes of the Midwestern USA. We related F. rusticus abundance in 17 lakes of northern Wisconsin, USA over time (1984‒2018) to measures of lake clarity (chlorophyll a concentration and Secchi disc depth) estimated from remote sensing (Landsat imagery). Contrary to the effects of invasive crayfish in other study systems, we found a weak, positive association between F. rusticus abundance and water clarity. We propose that lake clarity may increase if declines in small fishes caused by F. rusticus lead to population growth of zooplankton and consequent decreases in phytoplankton through a trophic cascade. Alternatively, F. rusticus could be passengers to, rather than drivers of, lake clarity trends, responding positively to increased littoral benthic productivity when lakes are clearer. Future research should aim to determine if F. rusticus causes or responds to changes in water clarity, but should also investigate the impacts of crayfish invasions on water clarity across a greater variety of lentic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamsson SAA, Goldman CR (1970) Distribution, density, and production of the crayfish Pacifastacus leniusculus Dana in Lake Tahoe California-Nevada. Oikos 21(1):83–91

    Article  Google Scholar 

  • Angeler DG, Sánchez-Carrillo S, García G, Alvarez-Cobelas M (2001) The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland. Hydrobiologia 464(1):89–98

    Article  Google Scholar 

  • Baldridge AK, Lodge DM (2014) Long-term studies of crayfish-invaded lakes reveal limited potential for macrophyte recovery from the seed bank. Freshw Sci 33(3):788–797

    Article  Google Scholar 

  • Bartoń K (2020) MuMIn: multi-model inference. https://CRAN.R-project.org/package=MuMIn

  • Berrill M, Chenoweth B (1982) The burrowing ability of nonburrowing crayfish. Am mid Nat 108(1):199–201

    Article  Google Scholar 

  • Brezonik P, Menken KD, Bauer M (2005) Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv Manag 21(4):373–382

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and predation of plankton. Science 150(3692):28–35

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York, NY: Springer. https://www.springer.com/gp/book/9780387953649

  • Capelli GM, Magnuson JJ (1983) Morphoedaphic and biogeographic analysis of crayfish distribution in Northern Wisconsin. J Crustacean Biol 3(4):548–564

    Article  Google Scholar 

  • Carpenter SR, Benson BJ, Biggs R, Chipman JW, Foley JA, Golding SA, Hammer RB, Hanson PC, Johnson PTJ, Kamarainen AM et al (2007) Understanding regional change: a comparison of two lake districts. Bioscience 57(4):323–335

    Article  Google Scholar 

  • Chipman JW, Lillesand TM, Schmaltz JE, Leale JE, Nordheim MJ (2004) Mapping lake water clarity with Landsat images in Wisconsin, U.S.A. Can J Remote Sens 30(1):1–7

    Article  Google Scholar 

  • Crosetto M, Moreno Ruiz JA, Crippa B (2001) Uncertainty propagation in models driven by remote sensed data. Remote Sens of Environ 76(3):373–385

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474

    Article  PubMed  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Elliott JA, Jones ID, Thackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559(1):401–411

    Article  CAS  Google Scholar 

  • Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70(4):967–971

    Article  Google Scholar 

  • Fox J, Weisberg S (2019) An {R} companion to applied regression. Thousand Oaks, CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol 22(1):151–163

    Article  Google Scholar 

  • Geiger W, Alcorlo P, Baltanás A, Montes C (2005) Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biol Invasions 7(1):49–73

    Article  Google Scholar 

  • Hansen GJA, Ives AR, Vander Zanden MJ, Carpenter SR (2013) Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter? Ecology 94(10):2207–2219

    Article  PubMed  Google Scholar 

  • Hanson PC, Carpenter SR, Cardille JA, Coe MT, Winslow LA (2007) Small lakes dominate a random sample of regional lake characteristics. Freshw Biol 52(5):814–822

    Article  Google Scholar 

  • Harvey GL, Henshaw AJ, Brasington J, England J (2019) Burrowing invasive species: an unquantified erosion risk at the aquatic-terrestrial interface. Rev Geophys 57(3):1018–1036

    Article  Google Scholar 

  • Hewitt BA, Lopez LS, Gaibisels KM, Murdoch A, Higgins SN, Magnuson JJ, Paterson AM, Rusak JA, Yao H, Sharma S (2018) Historical trends, drivers, and future projections of ice phenology in small north temperate lakes in the Laurentian Great Lakes Region. Water 10(1):70

    Article  Google Scholar 

  • Higgins SN, Vander Zanden MJ (2010) What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80(2):179–196

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343):151–164

    Article  Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    Article  CAS  PubMed  Google Scholar 

  • Keller RP, Frang K, Lodge DM (2008) Preventing the spread of invasive species: economic benefits of intervention guided by ecological predictions. Conserv Biol 22(1):80–88

    Article  PubMed  Google Scholar 

  • Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82(1):38–47

    Article  Google Scholar 

  • Kreps TA, Larson ER, Lodge DM (2016) Do invasive rusty crayfish (Orconectes rusticus) decouple littoral and pelagic energy flows in lake food webs? Freshw Sci 35(1):103–113

    Article  Google Scholar 

  • Larson ER, Kreps TA, Peters B, Peters JA, Lodge DM (2019) Habitat explains patterns of population decline for an invasive crayfish. Ecology 100(5):e02659

    Article  PubMed  Google Scholar 

  • Light T, Marchetti MP (2007) Distinguishing between invasions and habitat changes as drivers of diversity loss among California’s freshwater fishes. Conserv Biol 21(2):434–446

    Article  PubMed  Google Scholar 

  • Lodge DM, Lorman JG (1987) Reductions in submersed macrophyte biomass and species richness by the crayfish Orconectes rusticus. Can J Fish Aquat Sci 44(3):591–597

    Article  Google Scholar 

  • Matsuzaki SS, Usio N, Takamura N, Washitani I (2009) Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158(4):673–686

    Article  PubMed  Google Scholar 

  • McCarthy JM, Hein CL, Olden JD, Vander Zanden MJ (2006) Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw Biol 51(2):224–235

    Article  Google Scholar 

  • Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  • Moore JW, Schindler DE, Scheuerell MD, Smith D, Frodge J (2003) Lake eutrophication at the urban fringe, Seattle region, USA. Ambio 32(1):13–18

    Article  PubMed  Google Scholar 

  • Nilsson E, Solomon CT, Wilson KA, Willis TV, Larget B, Vander Zanden MJ (2012) Effects of an invasive crayfish on trophic relationships in north-temperate lake food webs. Freshw Biol 57(1):10–23

    Article  Google Scholar 

  • Nõges T (2009) Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633(1):33–43

    Article  Google Scholar 

  • Nyström P, Stenroth P, Holmqvist N, Berglund O, Larsson P, Granéli W (2006) Crayfish in lakes and streams: individual and population responses to predation, productivity, and substratum availability. Freshw Biol 51(11):2096–2113

    Article  Google Scholar 

  • Olden JD, McCarthy JM, Maxted JT, Fetzer WW, Vander Zanden MJ (2006) The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (USA) over the past 130 years. Biol Invasions 8(8):162–1628

    Article  Google Scholar 

  • Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112(11):4086–4097

    Article  Google Scholar 

  • Olsen TM, Lodge DM, Capelli GM, Houlihan RJ (1991) Mechanisms of impact of an introduced crayfish (Orconectes rusticus) on littoral congeners, snails, and macrophytes. Can J Fish Aquat Sci 48(10):1853–1861

    Article  Google Scholar 

  • Parkos JJ, Santucci VJ Jr, Wahl DH (2003) Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Can J Fish Aquat Sci 60(2):182–192

    Article  Google Scholar 

  • Pathak P, Kalra A, Ahmad S (2016) Temperature and precipitation changes in the Midwestern United States: implications for water management. Int J Water Resour D 33(6):1003–1019

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Livingstone DM (2007) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Change Biol 13(9):1898–1909

    Article  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504

    Article  PubMed  Google Scholar 

  • Perales KM, Hein CL, Lottig NR, Vander Zanden MJ (2020) Lake water level response to drought in a lake-rich region explained by lake and landscape characteristics. Can J Fish Aquat Sci 77:1836–1845

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, R-core (2019) nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme

  • Powers SM, Labou SG, Baulch HM, Hunt RJ, Lottig NR, Hampton SE, Stanley EH (2017) Ice duration drives winter nitrate accumulation in north temperate lakes. Limnol Oceanogr Lett 2(5):177–186

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

  • Rodríguez CF, Bécares E, Fernández-Aláez M (2003) Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506:421–426

    Article  Google Scholar 

  • Rose KC, Greb SR, Diebel M, Turner MG (2017) Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecol Appl 27(2):632–643

    Article  PubMed  Google Scholar 

  • Ross MRV, Topp SN, Appling AP, Yang X, Kuhn C, Butman D, Simard M, Pavelsky TM (2019) AquaSat: a data set to enable remote sensing of water quality for inland waters. Water Resour Res 55(11):10012–10025

    Article  Google Scholar 

  • Roth BM, Hein CL, Vander Zanden MJ (2006) Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Can J Fish Aquat Sci 63(2):335–344

    Article  Google Scholar 

  • Roth BM, Tetzlaff JC, Alexander ML, Kitchell JF (2007) Reciprocal relationships between exotic rusty crayfish, macrophytes, and Lepomis species in northern Wisconsin lakes. Ecosystems 10(1):75–85

    Article  Google Scholar 

  • Sargent LW, Baldridge AK, Vega-Ross M, Towle KM, Lodge DM (2014) A trematode parasite alters growth, feeding behavior, and demographic success of invasive rusty crayfish (Orconectes rusticus). Oecologia 175(3):947–958

    Article  PubMed  Google Scholar 

  • Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1):455–466

    Article  CAS  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Method Ecol Evol 1(2):103–113

    Article  Google Scholar 

  • Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357(6349):405–408

    Article  CAS  PubMed  Google Scholar 

  • Sokol NW, Kuebbing SE, Bradfowrd MA (2017) Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance. Ecology 98(8):2133–2144

    Article  PubMed  Google Scholar 

  • Stadelman TH, Brezonik PL, Kloiber S (2001) Seasonal patterns of chlorophyll a and Secchi disk transparency in lakes of East-Central Minnesota: implications for design of ground- and satellite-based monitoring programs. Lake Reserv Manag 17(4):299–314

    Article  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21(11):645–651

    Article  PubMed  Google Scholar 

  • Strayer DL, D’Antonio CM, Essl F, Fowler MS, Geist J, Hilt S, Jarić I, Jöhnk K, Jones CG, Lambin X et al (2017) Boom-bust dynamics in biological invasions: towards an improved application of the concept. Ecol Lett 20(10):1337–1350

    Article  PubMed  Google Scholar 

  • Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65(1):13–21

    Article  Google Scholar 

  • Takamura N, Kadono Y, Fukushima M, Nakagawa M, Kim B-HO (2003) Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecol Res 18(4):381–395

    Article  CAS  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD, Griffin JN, Silliman BR (2011) A framework to study the context-dependent impacts of marine invasions. J Exp Mar Biol Ecol 400(1–2):322–327

    Article  Google Scholar 

  • Torbick N, Hu F, Zhang J, Qi J, Zhang H, Becker B (2008) Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM. J Great Lakes Res 34(3):559–565

    Article  CAS  Google Scholar 

  • Twardochleb LA, Olden JD, Larson ER (2013) A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw Sci 32(4):1367–1382

    Article  Google Scholar 

  • USGS (2019) United States Geological Survey Earth Explorer. https://earthexplorer.usgs.gov/

  • Usio N, Kamiyama R, Saji A, Takamura N (2009) Size-dependent impacts of invasive alien crayfish on a littoral marsh community. Biol Conserv 142(7):1480–1490

    Article  Google Scholar 

  • Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Kalff J (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89(9):2542–2552

    Article  PubMed  Google Scholar 

  • Vander Zanden MJ, Hansen GJA, Latzka AW (2017) A framework for evaluating heterogeneity and landscape-level impacts of non-native aquatic species. Ecosystems 20(3):477–491

    Article  Google Scholar 

  • Vanni MJ, Layne CD, Arnott SE (1997) “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78(1):1–20

    Google Scholar 

  • Williams AE, Moss B, Eaton J (2002) Fish induced macrophyte loss in shallow lakes: top-down and bottom-up processes in mesocosm experiments. Freshw Biol 47(11):2216–2232

    Article  Google Scholar 

  • Williamson CE, Brentrup JA, Zhang J, Renwick WH, Hargreaves BR, Knoll LB, Overholt EP, Rose KC (2014) Lakes as sensors in the landscape: optical metrics as scalable sentinel responses to climate change. Limnol Oceanogr 59(3):840–850

    Article  CAS  Google Scholar 

  • Wilson LR (1935) Lake development and plant succession in Vilas County, Wisconsin. Ecol Monogr 5(2):207–247

    Article  CAS  Google Scholar 

  • Wilson KA, Magnuson JJ, Lodge DM, Hill AM, Kratz TK, Perry WL, Willis TV (2004) A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can J Fish Aquat Sci 61(11):2255–2266

    Article  Google Scholar 

  • Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ (2003) Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr 48(6):2321–2334

    Article  CAS  Google Scholar 

  • Yang Z, Anderson YZ (2016) Estimating chlorophyll-a concentration in a freshwater lake using Landsat 8 imagery. J Environ Earth Sci 6:134–142

    Google Scholar 

Download references

Acknowledgements

We are grateful to all the past researchers who collected crayfish data in our lakes. Our study was motivated by conversations with Stephen J. Gilbert of the Wisconsin Department of Natural Resources on lake clarity and invasive crayfish, and our manuscript was improved by suggestions from Joseph J. Parkos III, Jeremy S. Tiemann, members of the laboratory of the senior author, and several anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Szydlowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Derek GRAY.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szydlowski, D.K., Daniels, M.K. & Larson, E.R. Do rusty crayfish (Faxonius rusticus) invasions affect water clarity in north temperate lakes?. Limnology 23, 219–230 (2022). https://doi.org/10.1007/s10201-021-00683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00683-x

Keywords

Navigation