Skip to main content
Log in

Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

A new procedure to find the ultimate ruin probability in the Cramér-Lundberg risk model is presented for claims with a mixture of m Erlang distributions. The method requires to solve an m order linear recurrence sequence, which translates into finding the roots of an m-th degree polynomial and solving a system of m linear equations. We here study only the case when the roots of the polynomial are simple. A new approximation method for the ruin probability is also proposed based on this procedure and the simulation of a Poisson random variable. Several analytical expressions already known for the ruin probability in the case of Erlang claims, or mixtures of these, are recovered. Numerical results and plots from R programming are provided as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  • Anderson B, Jackson J, Sitharam M (1998) Descartes Rule of signs revisited. Amer Math Monthly 105(5):447–451

    Article  MathSciNet  Google Scholar 

  • Asmussen S, Albrecher H (2010) Ruin Probabilities. World Scientific, Singapore

    Book  Google Scholar 

  • Asmussen S, Binswanger K (1997) Simulation of Ruin Probabilities for Subexponential Claims. ASTIN Bulletin 27(2):297–318

    Article  Google Scholar 

  • Brousseau BA (1971) Linear Recursion and Fibonacci Sequences. The Fibonacci Association

  • Choi SK, Choi MH, Lee HS, Lee EY (2010) New Approximations of Ruin Probability in a Risk Process. Quality Technology and Quantitative Management 7(4):377–383

    Article  Google Scholar 

  • Constantinescu C, Kortschak D, Maume-Deschamps V (2013) Ruin Probabilities in Models with a Markov Chain Dependence Structure. Scand Actuar J 6:453–476

    Article  MathSciNet  Google Scholar 

  • Constantinescu C, Samorodnitsky G, Zhu W (2018) Ruin Probabilities in Classical Risk Models with Gamma Claims. Scand Actuar J 7:555–575

    Article  MathSciNet  Google Scholar 

  • Cramér H (1930) On the Mathematical Theory of Risk. Skandia Jubilee 4, Stockholm

  • Cramér H (1969) Historical Review of Filip Lundberg’s Works on Risk Theory. Scand Actuar J 1969:6–9

    Article  MathSciNet  Google Scholar 

  • Delbaen F, Haezendonck J (1987) Classical Risk Theory in an Economic Environment. Insurance: Mathematics and Economics 6(2):86-116

  • De Vylder F (1978) A Practical Solution to the Problem of Ultimate Ruin Probability. Scand Actuar J 2:114–119

    Article  Google Scholar 

  • Dufresne F, Gerber HU, Shiu ES (1991) Risk Theory with the Gamma Process. ASTIN Bulletin 21(2):177–192

    Article  Google Scholar 

  • Hasan M (2011) The Computation of Multiple Roots of a Polynomial using Structure Preserving Matrix Methods. Sheffield University, PhD Computer Science Thesis

  • He Y, Li X, Zhang J (2003) Some Results of Ruin Probability for the Classical Risk Process. J Appl Math Decis Sci 7(3):133–146

    MathSciNet  MATH  Google Scholar 

  • Hirst HP, Macey WT (1997) Bounding the Roots of Polynomials. Coll Math J 28(4):292–295

    Article  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix Analysis. 2nd. ed. Cambridge University Press

  • Klugman S, Panjer H, Willmot G (2008) Loss Models: From Data to Decisions. John Wiley & Sons

  • Lang S (1987) Linear Algebra. 3th. ed. Springer-Verlag

  • Lee SCK, Lin XS (2010) Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions. North Am Actuarial J 14(1):107–130

    Article  MathSciNet  Google Scholar 

  • Lundberg F (1903) Approximerad framställning af sannollikhestfunktionen: Aterförsäkering af kollektivrisker. PhD Thesis. Almqvist & Wiksell

  • Lundberg F (1926) Försäkringsteknisk riskutjämning: Teori. F. Englunds boktryckeri A. B, Stockholm

    Google Scholar 

  • Philipson C (1963) A Note on Moments of a Poisson Probability Distribution. Scand Act J 1963 (3-4), 243-244. Published online: 22 Dec 2011

  • Prasolov V (2008) Polynomials. Springer

  • Roel V, Lan G, Antonio K, Badescu A, Lin XS (2015) Fitting mixtures of Erlangs to censored and truncated data using the EM algorithm. ASTIN Bulletin 45(3):729–758

    Article  MathSciNet  Google Scholar 

  • Rolski T, Schmidli H, Schmidt V Teugels J (2008) Stochastic Processes for Insurance and Finance. John Wiley & Sons

  • Santana D, González J, Rincón L (2017) Approximations of the Ultimate Ruin Probability in a Risk Process using Erlang Mixtures. Methodol Comput Appl Probab 19(3):775–798

    Article  MathSciNet  Google Scholar 

  • Santana DJ, Rincón L (2022) Ruin Probability for finite Erlang mixture claims and an approximation for general claims. Work in progress

  • Schassberger R (1973) Warteschlangen. Springer-Verlag

  • Tijms H (1986) Stochastic Modeling and Analysis: a Computational Approach. John Wiley & Sons

  • Turner LR (1996) Inverse of the Vandermonde Matrix and its Applications. Washington D. C, NASA Technical Report

    Google Scholar 

  • Willmot G, Woo JK (2007) On the Class of Erlang Mixtures with Risk Theoretic Applications. North American Actuarial Journal 11(2):99–115

    Article  MathSciNet  Google Scholar 

  • Willmot G, Lin S (2011) Risk Modeling with the Mixed Erlang Distribution. Appl Stoch Model Bus Ind 27(1):2–16

    Article  Google Scholar 

  • Yang L, Hou XR, Zeng ZB (1996) A Complete Discrimination System for Polynomials. Sci China ser E 39(6):628–646

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rincón.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

General Solution to the Recurrence Sequence

Proposition 1

Suppose the roots \(z_1,\ldots ,z_m\) of the characteristic polynomial (12) are simple. Then, for some constants \(b_1,\ldots ,b_m\), the general solution to the linear recurrence sequence (11) can be written as

$$\begin{aligned} \overline{C}_{n}=\sum _{j=1}^mb_j\,z_j^n,\quad \text{ for }\ n\ge 0. \end{aligned}$$

Proof

For \(n\ge 0\),

$$\begin{aligned} \overline{C}_{n+m} = \sum _{j=1}^{m} b_j\,z_j^{n+m} = \sum _{j=1}^m b_j\,z_j^{n} \sum _{k=0}^{m-1} \alpha _{m-k}\,z_j^{k} = \sum _{k=0}^{m-1} \alpha _{m-k}\,\sum _{j=1}^m b_j\,z_j^{n+k} = \sum _{k=0}^{m-1} \alpha _{m-k}\,\overline{C}_{n+k}. \end{aligned}$$

Sufficient Condition for Multiplicity One

Proposition 2

Suppose the equilibrium r.v. \(N_e\), defined by (7), has a \(\text{ unif }\,\{1,\ldots ,m\}\) distribution. Then the zeroes of the characteristic polynomial (12) are simple.

Proof

In this case, the values \(\alpha _k\) are the constant \(\alpha =\overline{C}_0/m\) and the characteristic polynomial takes the simpler form

$$\begin{aligned} p(y)=y^m-\alpha \sum _{j=0}^{m-1}y^j=y^m-\alpha \,\frac{1-y^m}{1-y},\quad \text{ for } \ y\ne 0,1. \end{aligned}$$

Define \(H(y)=(1-y)p(y)=(1-y)y^m-\alpha (1-y^m)\). It follows that

  1. a)

    \(H'(y)=(1-y)p'(y)-p(y)\), and

  2. b)

    \(yH'(y)=mH(y)-y^{m+1}+\alpha m\).

Suppose that z is a zero of p(y). Then \(z\,p(z)=0\), i.e. \(z^{m+1}=\alpha \,\sum _{j=1}^mz^j\). Taking norms and using the fact that all roots have norm strictly less than one,

$$\begin{aligned} |z|^{m+1}\le \alpha \,\sum _{j=1}^m|z|^j<\alpha \,m. \end{aligned}$$

Then, \(H(z)=0\) and by (b), \(zH'(z)=-z^{m+1}+\alpha m\ne 0\). Hence, \(H'(z)\ne 0\) and by (a), \(p'(z)\ne 0\). This means z has multiplicity 1.

Constantinescu et al. Formula for \(\text{ Erlang }(2,\alpha )\) Claims

For \(\text{ Erlang }(2,\alpha )\) claims, the following ruin probability formula was obtained in Constantinescu et al. (2018),

$$\begin{aligned} \psi (u)=\frac{2\lambda }{\alpha c}\left( m_1\,e^{(s_1-\alpha )u} + m_2\,e^{(s_2-\alpha )u}\right) , \end{aligned}$$
(23)

for some values \(m_1,m_2,s_1\) and \(s_2\). We will show that (23) is equivalent to the ruin probability formula (18) obtained in this work. Substituting the value \(c=(1+\theta )\lambda \mu =2(1+\theta )\lambda /\alpha\) in the formulas for \(s_1\) and \(s_2\) given in Constantinescu et al. (2018), one obtains

$$\begin{aligned} s_{1,2}=\frac{\lambda \pm \sqrt{\lambda ^2 + 4\lambda \alpha c} }{2c} =\alpha \,\frac{\overline{C}_0\pm \sqrt{\overline{C}_0^2 + 8\overline{C}_0}}{4} =\alpha \,z_{1,2}. \end{aligned}$$
(24)

Now, according to Constantinescu et al. (2018), the values of \(m_1\) and \(m_2\) are the solution to the partial fractions problem

$$\begin{aligned} \frac{s+\alpha /2}{s^2-\lambda (s+\alpha )/c}=\frac{m_1}{s-s_1} + \frac{m_2}{s-s_2}. \end{aligned}$$

This leads to

$$\begin{aligned} m_{1,2}=\frac{1}{2}\pm \frac{2+\overline{C}_0}{2\sqrt{\overline{C}_0^2+8\overline{C}_0}}.\end{aligned}$$
(25)

Thus, setting \(b_{1,2}=m_{1,2}\,\overline{C}_0\) and \(z_{1,2}=s_{1,2}/\alpha\), one can see that the formulas (18) and (23) are exactly the same.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón, L., Santana, D.J. Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences. Methodol Comput Appl Probab 24, 2213–2236 (2022). https://doi.org/10.1007/s11009-021-09913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09913-2

Keywords

Mathematics Subject Classification (2010)

Navigation