Skip to main content
Log in

D‐Band EPR and ENDOR Spectroscopy of 15N‐Labeled Photosystem I

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

For billions of years, nature has optimized the photosynthetic machinery that converts light energy into chemical energy. Key primary reactions of photosynthesis occur in large membrane protein–cofactor complexes. The light-induced sequential electron transfer reactions occur through a chain of donor/acceptor cofactors embedded in the protein matrix resulting in a long-lived transmembrane charge-separated state. EPR is the method of choice to study electron transfer and the interaction of protein environment with redox-active cofactors. However, the spectra of organic cofactor radicals typically are not fully resolved and severely overlap at conventional X-band EPR. Even at Q-band EPR, this overlap is present and often a serious problem. As a result, there is a large variation of the reported EPR data and limited understanding of electronic structures of several redox-active cofactors. These serious problems can often be overcome by the excellent spectral resolution provided by high-frequency EPR (HF EPR). Here, we study the electronic structure of the primary electron donor P700 and the secondary electron acceptor A1 of Photosystem I (PSI) using 130 GHz (D-band) EPR and Electron–Nuclear-Double-Resonance (ENDOR) spectroscopy. PSI was isotopically labeled with 15N (I = ½) to avoid quadrupolar interactions in the most abundant nitrogen isotope 14N (I = 1) and simplify the ENDOR spectra. ENDOR spectroscopy is central for determining the hyperfine coupling of nitrogen atoms of the two chlorophyll molecules comprising oxidized P700 and the involvement of protein nitrogen atoms with reduced A1. While HF ENDOR of A1 allows identification of two nitrogen atoms, HF ENDOR of P700+ still does not permit unique assignment of the recorded hyperfine couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science Limited, Oxford, 2002)

    Book  Google Scholar 

  2. D.W. Lawlor, Photosynthesis (BIOS Scientific Publishers Limited, New York, 2001)

    Google Scholar 

  3. D. Shevela, L.O. Björn, Govindjee, Photosynthesis: Solar Energy for Life (World Scientific Publishing, Singapore, 2019)

    Google Scholar 

  4. R.E. Blankenship et al., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011)

    Article  ADS  Google Scholar 

  5. T.J. Wydrzynski, K. Satoh, Photosystem II - the Light-Driven Water: Plastoquinone Oxidoreductase, vol. 22 (Springer, Dordrecht, 2005)

    Google Scholar 

  6. J.H. Golbeck, Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, vol. 24 (Springer, Dordrecht, 2006)

    Google Scholar 

  7. A.J. Hoff, J. Deisenhofer, Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys. Rep. 287, 1–247 (1997)

    Article  ADS  Google Scholar 

  8. P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001)

    Article  ADS  Google Scholar 

  9. P. Fromme, P. Jordan, N. Krauss, Structure of photosystem I. Biochim. Biophys. Acta-Bioenerg. 1507, 5–31 (2001)

    Article  Google Scholar 

  10. U. Ermler, G. Fritzsch, S.K. Buchanan, H. Michel, Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65 Å resolution—cofactors and protein–cofactor interactions. Structure 2, 925–936 (1994)

    Article  Google Scholar 

  11. M.H.B. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997)

    Article  Google Scholar 

  12. A. Zouni, H.T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, P. Orth, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Ångstrom resolution. Nature 409, 739–743 (2001)

    Article  ADS  Google Scholar 

  13. Y. Umena, K. Kawakami, J.R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ångstrom. Nature 473, 55-U65 (2011)

    Article  ADS  Google Scholar 

  14. M. Suga et al., Native structure of photosystem II at 1.95 Ångstrom resolution viewed by femtosecond X-ray pulses. Nature 517, 99-U265 (2015)

    Article  ADS  Google Scholar 

  15. M.G. Müller, C. Slavov, R. Luthra, K.E. Redding, A.R. Holzwarth, Independent Initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc. Natl. Acad. Sci. USA 107, 4123–4128 (2010)

    Article  ADS  Google Scholar 

  16. A.R. Holzwarth, M.G. Müller, J. Niklas, W. Lubitz, Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys. J. 90, 552–565 (2006)

    Article  ADS  Google Scholar 

  17. A.R. Holzwarth, M.G. Müller, J. Niklas, W. Lubitz, Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii. J. Phys. Chem. B 109, 5903–5911 (2005)

    Article  Google Scholar 

  18. M.G. Müller, J. Niklas, W. Lubitz, A.R. Holzwarth, Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys. J. 85, 3899–3922 (2003)

    Article  Google Scholar 

  19. K. Brettel, Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta-Bioenerg. 1318, 322–373 (1997)

    Article  Google Scholar 

  20. N. Srinivasan, J.H. Golbeck, Protein–cofactor interactions in bioenergetic complexes: the role of the A1A and A1B phylloquinones in photosystem I. Biochim. Biophys. Acta-Bioenerg. 1787, 1057–1088 (2009)

    Article  Google Scholar 

  21. J.A. Bautista, F. Rappaport, M. Guergova-Kuras, R.O. Cohen, J.H. Golbeck, J.Y. Wang, D. Beal, B.A. Diner, Biochemical and biophysical characterization of photosystem I from phytoene desaturase and Xi-carotene desaturase deletion mutants of Synechocystis Sp. Pcc 6803. J. Biol. Chem. 280, 20030–20041 (2005)

    Article  Google Scholar 

  22. M. Guergova-Kuras, B. Boudreaux, A. Joliot, P. Joliot, K. Redding, Evidence for two active branches for electron transfer in photosystem I. Proc. Natl. Acad. Sci. USA 98, 4437–4442 (2001)

    Article  ADS  Google Scholar 

  23. P. Joliot, A. Joliot, In vivo analysis of the electron transfer within photosystem I: Are the two phylloquinones involved? Biochemistry 38, 11130–11136 (1999)

    Article  Google Scholar 

  24. N. Dashdorj, W. Xu, R.O. Cohen, J.H. Golbeck, S. Savikhin, Asymmetric electron transfer in cyanobacterial photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys. J. 88, 1238–1249 (2005)

    Article  Google Scholar 

  25. O.G. Poluektov, J. Niklas, L.M. Utschig, Spin-correlated radical pairs as quantum sensors of bidirectional ET mechanisms in photosystem I. J. Phys. Chem. B 123, 7536–7544 (2019)

    Article  Google Scholar 

  26. O.G. Poluektov, L.M. Utschig, Directionality of electron transfer in type I reaction center proteins: high-frequency EPR study of PSI with removed iron-sulfur centers. J. Phys. Chem. B 119, 13771–13776 (2015)

    Article  Google Scholar 

  27. O.G. Poluektov, S.V. Paschenko, L.M. Utschig, K.V. Lakshmi, M.C. Thurnauer, Bidirectional electron transfer in photosystem I: direct evidence from high-frequency time-resolved EPR spectroscopy. J. Am. Chem. Soc. 127, 11910–11911 (2005)

    Article  Google Scholar 

  28. I.R. Vassiliev, M.L. Antonkine, J.H. Golbeck, Iron-sulfur clusters in type I reaction centers. Biochim. Biophys. Acta-Bioenerg. 1507, 139–160 (2001)

    Article  Google Scholar 

  29. A.N. Webber, W. Lubitz, P700: the primary electron donor of photosystem I. Biochim. Biophys. Acta 1507, 61–79 (2001)

    Article  Google Scholar 

  30. W. Lubitz, EPR studies of the primary electron donor P700 in Photosystem I, in Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase. ed. by J.H. Golbeck (Springer, Dordrecht, 2006), pp. 245–269

    Chapter  Google Scholar 

  31. K. Möbius, W. Lubitz, N. Cox, A. Savitsky, Biomolecular EPR meets NMR at high magnetic fields. Magnetochemistry 4, 85 (2018)

    Article  Google Scholar 

  32. M.C. Thurnauer, O.G. Poluektov, G. Kothe, Time-resolved high-frequency and multifrequency EPR studies of spin-correlated radical pairs in photosynthetic reaction center proteins, in Very high frequency (Vhf) ESR/EPR, vol. 22, ed. by O. Grinberg, L.J. Berliner (Springer, New York, 2004), pp. 166–206

    Google Scholar 

  33. O.G. Poluektov, L.M. Utschig, S.L. Schlesselman, K.V. Lakshmi, G.W. Brudvig, G. Kothe, M.C. Thurnauer, Electronic structure of the P700 special pair from high-frequency electron paramagnetic resonance spectroscopy. J. Phys. Chem. B 106, 8911–8916 (2002)

    Article  Google Scholar 

  34. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems: Characterization of Transient Paramagnetic States (The Royal Society of Chemistry, Cambridge, 2009)

    Google Scholar 

  35. P.J. Bratt, O.G. Poluektov, M.C. Thurnauer, J. Krzystek, L.C. Brunel, J. Schrier, Y.W. Hsiao, M. Zerner, A. Angerhofer, The G-factor anisotropy of plant chlorophyll A. J. Phys. Chem. B 104, 6973–6977 (2000)

    Article  Google Scholar 

  36. A. van der Est, T. Prisner, R. Bittl, P. Fromme, W. Lubitz, K. Mobius, D. Stehlik, Time-resolved X-, K-, and W-band EPR of the radical pair state P700•+A1•- of photosystem I in comparison with P865•+Qa•- in bacterial reaction centers. J. Phys. Chem. B 101, 1437–1443 (1997)

    Article  Google Scholar 

  37. O. Burghaus, M. Plato, M. Rohrer, K. Möbius, F. Macmillan, W. Lubitz, 3 mm high-field EPR on semiquinone radical anions Q•- related to photosynthesis and on the primary donor P•+ and acceptor Qa•- in reaction centers of Rhodobacter sphaeroides R-26. J. Phys. Chem. 97, 7639–7647 (1993)

    Article  Google Scholar 

  38. R. Klette, J.T. Torring, M. Plato, K. Möbius, B. Bonigk, W. Lubitz, Determination of the G-tensor of the primary donor cation radical in single-crystals of Rhodobacter sphaeroides R-26 reaction centers by 3 mm high-field EPR. J. Phys. Chem. 97, 2015–2020 (1993)

    Article  Google Scholar 

  39. J. Bonnerjea, M.C.W. Evans, Identification of multiple components in the intermediary electron carrier complex of photosystem I. FEBS Lett. 148, 313–316 (1982)

    Article  Google Scholar 

  40. P. Gast, T. Swarthoff, F.C.R. Ebskamp, A.J. Hoff, Evidence for a new early acceptor in photosystem-I of plants—an electron-spin-resonance investigation of reaction center triplet yield and of the reduced intermediary acceptors. Biochim. Biophys. Acta 722, 163–175 (1983)

    Article  Google Scholar 

  41. S.E.J. Rigby, M.C.W. Evans, P. Heathcote, ENDOR and special triple resonance spectroscopy of  A1•-  of photosystem. Biochemistry 35, 6651–6656 (1996)

    Article  Google Scholar 

  42. F. MacMillan, J. Hanley, L. van der Weerd, M. Knupling, S. Un, A.W. Rutherford, Orientation of the phylloquinone electron acceptor anion radical in photosystem I. Biochemistry 36, 9297–9303 (1997)

    Article  Google Scholar 

  43. J. Hanley, Y. Deligiannakis, F. MacMillan, H. Bottin, A.W. Rutherford, ESEEM study of the phyllosemiquinone radical A1•- in 14N- and 15N-labeled photosystem I. Biochemistry 36, 11543–11549 (1997)

    Article  Google Scholar 

  44. N. Srinivasan, R. Chatterjee, S. Milikisiyants, J.H. Golbeck, K.V. Lakshmi, Effect of hydrogen bond strength on the redox properties of phylloquinones: a two-dimensional hyperfine sublevel correlation spectroscopy study of photosystem I. Biochemistry 50, 3495–3501 (2011)

    Article  Google Scholar 

  45. J. Niklas, B. Epel, M.L. Antonkine, S. Sinnecker, M.E. Pandelia, W. Lubitz, Electronic structure of the quinone radical anion A1•- of photosystem I investigated by advanced pulse EPR and ENDOR techniques. J. Phys. Chem. B 113, 10367–10379 (2009)

    Article  Google Scholar 

  46. J. Niklas, O. Gopta, B. Epel, W. Lubitz, M.L. Antonkine, Investigation of the stationary and transient A1•- radical in Trp -> Phe mutants of photosystem I. Appl. Magn. Reson. 38, 187–203 (2010)

    Article  Google Scholar 

  47. H.F. Daboll, H.L. Crespi, J.J. Katz, Mass cultivation of algae in pure heavy water. Biotechnol. Bioeng. 4, 281–297 (1962)

    Article  Google Scholar 

  48. L.M. Utschig, L.X. Chen, O.G. Poluektov, Discovery of native metal ion sites located on the ferredoxin docking side of photosystem I. Biochemistry 47, 3671–3676 (2008)

    Article  Google Scholar 

  49. A.Y. Bresgunov, A.A. Dubinskii, V.N. Krimov, Y.G. Petrov, O.G. Poluektov, Y.S. Lebedev, Pulsed EPR in 2-mm band. Appl. Magn. Reson. 2, 715–728 (1991)

    Article  Google Scholar 

  50. W.B. Mims, Pulsed endor experiments. Proc. R. Soc. A 283, 452–457 (1965)

    ADS  Google Scholar 

  51. D. Goldfarb, S. Stoll, EPR Spectroscopy: Fundamentals and Methods (Wiley, New Jersey, 2018)

    Google Scholar 

  52. C. Gemperle, A. Schweiger, Pulsed electron-nuclear double resonance methodology. Chem. Rev. 91, 1481–1505 (1991)

    Article  Google Scholar 

  53. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, New York, 2001)

    Google Scholar 

  54. S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  55. P.J. Bratt, M. Rohrer, J. Krzystek, M.C.W. Evans, L.C. Brunel, A. Angerhofer, Submillimeter high-field EPR studies of the primary donor in plant photosystem I P700+. J. Phys. Chem. 101, 9686–9689 (1997)

    Article  Google Scholar 

  56. A. Petrenko, A.L. Maniero, J. van Tol, F. MacMillan, Y. Li, L.C. Brunel, K. Redding, A High-field EPR study of P700+ in wild-type and mutant photosystem I from Chlamydomonas reinhardtii. Biochemistry 43, 1781–1786 (2004)

    Article  Google Scholar 

  57. T.F. Prisner, A.E. McDermott, S. Un, J.R. Norris, M.C. Thurnauer, R.G. Griffin, Measurement of the g-tensor of the P700+. signal from deuterated cyanobacterial photosystem I particles. Proc. Natl. Acad. Sci. USA 90, 9485–9488 (1993)

    Article  ADS  Google Scholar 

  58. S.G. Zech, W. Hofbauer, A. Kamlowski, P. Fromme, D. Stehlik, W. Lubitz, R. Bittl, A structural model for the charge separated state P700•+A1•- in photosystem I from the orientation of the magnetic interaction tensors. J. Phys. Chem. B 104, 9728–9739 (2000)

    Article  Google Scholar 

  59. C. Teutloff, W. Hofbauer, S.G. Zech, M. Stein, R. Bittl, W. Lubitz, High-frequency EPR studies on cofactor radicals in photosystem I. Appl. Magn. Reson. 21, 363–379 (2001)

    Article  Google Scholar 

  60. A.J. Stone, Gauge invariance of g-tensor. Proc. R. Soc. A 271, 424–424 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  61. A.J. Stone, g-factors of aromatic free radicals. Mol. Phys. 6, 509–515 (1963)

    Article  ADS  Google Scholar 

  62. M. Plato, N. Krauss, P. Fromme, W. Lubitz, Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis. Chem. Phys. 294, 483–499 (2003)

    Article  Google Scholar 

  63. R. Angstl, Contribution of the relativistic mass correction to the g-tensor of molecules. Chem. Phys. 132, 435–442 (1989)

    Article  Google Scholar 

  64. J. Telser, Electron-Nuclear Double Resonance (ENDOR) Spectroscopy. Encyclopedia of Inorganic Chemistry (Wiley, Chichester, 2005)

    Google Scholar 

  65. H. Käss, W. Lubitz, Evaluation of 2D-ESEEM data of 15N-labeled radical cations of the primary donor P700 in photosystem I and chlorophyll a. Chem. Phys. Lett. 251, 193–203 (1996)

    Article  ADS  Google Scholar 

  66. H. Käss, E. Bittersmann-Weidlich, L.E. Andreasson, B. Bönigk, W. Lubitz, ENDOR and ESEEM of the 15N labelled radical cations of chlorophyll a and the primary donor P700 in photosystem I. Chem. Phys. Lett. 194, 419–432 (1995)

    Google Scholar 

  67. M. Mac, N.R. Bowlby, G.T. Babcock, J. McCracken, Monomeric spin density distribution in the primary donor of photosystem I as determined by electron magnetic resonance: functional and thermodynamic implications. J. Am. Chem. Soc. 120, 13215–13223 (1998)

    Article  Google Scholar 

  68. M.M. Chestnut, S. Milikisiyants, R. Chatterjee, J. Kern, A.I. Smirnov, Electronic structure of the primary electron donor P700+• in photosystem I studied by multifrequency HYSCORE spectroscopy at X- and Q-band. J. Phys. Chem. B 125, 36–48 (2021)

    Article  Google Scholar 

  69. M. Mac, X.S. Tang, B.A. Diner, J. McCracken, G.T. Babcock, Identification of histidine as an axial ligand to P700+. Biochemistry 35, 13288–13293 (1996)

    Article  Google Scholar 

  70. L. Krabben, E. Schlodder, R. Jordan, D. Carbonera, G. Giacometti, H. Lee, A.N. Webber, W. Lubitz, Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39, 13012–13025 (2000)

    Article  Google Scholar 

  71. H. Käss, P. Fromme, H.T. Witt, W. Lubitz, Orientation and electronic structure of the primary donor radical cation P700+ in photosystem I: a single crystals EPR and ENDOR study. J. Phys. Chem. B 105, 1225–1239 (2001)

    Article  Google Scholar 

  72. H. Witt, E. Schlodder, C. Teutloff, J. Niklas, E. Bordignon, D. Carbonera, S. Kohler, A. Labahn, W. Lubitz, Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41, 8557–8569 (2002)

    Article  Google Scholar 

  73. D.G. Artiukhin, P. Eschenbach, J. Neugebauer, Computational investigation of the spin-density asymmetry in photosynthetic reaction center models from first principles. J. Phys. Chem. B 124, 4873–4888 (2020)

    Article  Google Scholar 

  74. D. Goldfarb, B. Epel, H. Zimmermann, G. Jeschke, 2D Triple in orientationally disordered samples—a means to resolve and determine relative orientation of hyperfine tensors. J. Magn. Reson. 168, 75–87 (2004)

    Article  ADS  Google Scholar 

  75. E. Schlodder, K. Falkenberg, M. Gergeleit, K. Brettel, Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I. Biochemistry 37, 9466–9476 (1998)

    Article  Google Scholar 

  76. M.C. Thurnauer, P. Gast, Q-band (35 GHz) electron-paramagnetic resonance results on the nature of A1 and the electron-spin polarization in photosystem I particles. Photobiochem. Photobiophys. 9, 29–38 (1985)

    Google Scholar 

  77. M.A. Yu, T. Egawa, S.R. Yeh, D.L. Rousseau, G.J. Gerfen, EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine cytochrome C oxidase with molecular oxygen. J. Magn. Reson. 203, 213–219 (2010)

    Article  ADS  Google Scholar 

  78. J. Niklas, O.G. Poluektov, High-frequency EPR of the sulfur dioxide radical—unpublished results

  79. G. Link et al., Structure of the P700+A1- radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations. J. Am. Chem. Soc. 123, 4211–4222 (2001)

    Article  Google Scholar 

  80. B. Epel, J. Niklas, S. Sinnecker, H. Zimmermann, W. Lubitz, Phylloquinone and related radical anions studied by pulse electron nuclear double resonance spectroscopy at 34 GHz and density functional theory. J. Phys. Chem. B 110, 11549–11560 (2006)

    Article  Google Scholar 

  81. S. Sinnecker, E. Reijerse, F. Neese, W. Lubitz, Hydrogen bond geometries from electron paramagnetic resonance and electron-nuclear double resonance parameters: density functional study of quinone radical anion-solvent interactions. J. Am. Chem. Soc. 126, 3280–3290 (2004)

    Article  Google Scholar 

  82. T.J. Lin, P.J. O’Malley, Binding site influence on the electronic structure and electron paramagnetic resonance properties of the phyllosemiquinone free radical of photosystem I. J. Phys. Chem. B 115, 9311–9319 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors acknowledge Arlene Wagner for growth of perdeuterated and 15N-labeled cyanobacteria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisa M. Utschig or Oleg G. Poluektov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niklas, J., Brahmachari, U., Utschig, L.M. et al. D‐Band EPR and ENDOR Spectroscopy of 15N‐Labeled Photosystem I. Appl Magn Reson 53, 1175–1193 (2022). https://doi.org/10.1007/s00723-021-01438-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01438-8

Navigation