Skip to main content
Log in

Rotational viscosity effect on the stability of finite journal bearings lubricated by ferrofluids

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work investigates the dynamic behavior of finite hydrodynamic journal bearings lubricated by ferrofluids based on the Shliomis model that considers the rotational viscosity effects of ferromagnetic particles and their magnetic moment. A finite wire located out of the journal bearing system produces the applied magnetic field. The pressure field is computed by solving the modified Reynolds equation, obtained from Navier–Stokes equations for this kind of fluids, to evaluate the journal bearing dynamic characteristics. The evaluation of dynamic coefficients is based on the numerical perturbation approach. These allow obtaining the whirling frequency, critical mass and the threshold speed to determine the stability zone of the journal bearing. The resolution method is first validated in the particular case of a Newtonian fluid. Excellent agreement with the numerical results from the literature was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lund JW, Thomsen KK (1978) A calculation method and data for the dynamic coefficients of oil lubricated journal bearings. Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, ASME, New York, 1–28

  2. Ebrat O, Mourelatos ZP, Hu K, Vlahopoulos N, Vaidyanathan K (2004) Calculation of journal bearing dynamic characteristics including journal misalignment and bearing structural deformation. Trib Trans 47:94–102. https://doi.org/10.1080/05698190490278994

    Article  Google Scholar 

  3. Zheng T, Hasebe N (2000) Calculation of equilibrium position and dynamic coefficients of a journal bearing using free boundary theory. ASME J of Tribo 122:616–621. https://doi.org/10.1115/1.555410

    Article  Google Scholar 

  4. Hekmat MH, Biukpour GA (2019) Numerical study of the oil whirl phenomenon in a hydrodynamic journal bearing. J Braz Soc Mech Sci Eng 41:218. https://doi.org/10.1007/s40430-019-1724-9

    Article  Google Scholar 

  5. Rao TVVLN, Rani AMA, Awang M, Hashim FM (2017) Stability evaluation of three-layered journal bearing with slip/partial slip. Indus Lubri and Tribo 69(3):334–341. https://doi.org/10.1108/ILT-08-2016-0184

    Article  Google Scholar 

  6. Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. ASME J Fluids Eng 124(3):617–624. https://doi.org/10.1115/1.1486223

    Article  Google Scholar 

  7. Chen Y, Feng J, Sun Y, Peng X, Dai Q, Yu C (2020) Effect of groove shape on the hydrodynamic lubrication of journal bearing considering cavitation. Eng Comput 37(5):1557–1576. https://doi.org/10.1108/EC-06-2019-0287

    Article  Google Scholar 

  8. Meng F, Yang T (2013) Preliminary study on mechanism of cavitation in lubricant of textured sliding bearing. Proc. Inst. Mechanical Eng. Part J: J. Eng. Tribol. 227(7):695–708. https://doi.org/10.1177/1350650112468560

    Article  Google Scholar 

  9. Huang W, Wang X (2015) Ferrofluids lubrication: a status report. Lubri Sci 28(1):3–26. https://doi.org/10.1002/ls.1291

    Article  Google Scholar 

  10. Martinez L, Cecelja F, Rakowski R (2005) A novel magneto-optic ferrofluid material for sensor applications. Sens and Actua A 123–124:438–443. https://doi.org/10.1016/j.sna.2005.05.003

    Article  Google Scholar 

  11. Bajkowski J, Nachman J, Shillor M, Sofonea M (2008) A model for a magnetorheological damper. Math Comput Model 48:56–68. https://doi.org/10.1016/j.mcm.2007.08.014

    Article  MATH  Google Scholar 

  12. Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Technol 14:1289–1294. https://doi.org/10.1088/0957-0233/14/8/314

    Article  Google Scholar 

  13. Zhang P, Gu B, Zhou J, Wei L (2018) On hydrodynamic lubrication characteristics of ferrofluid film in a spiral groove mechanical seal. Indus Lubri and Tribo 70(9):1783–1797. https://doi.org/10.1108/ILT-07-2017-0186

    Article  Google Scholar 

  14. Soltanipour H, Gharegöz A, Oskooee MB (2020) Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe. J Braz Soc Mech Sci Eng 42:135. https://doi.org/10.1007/s40430-020-2218-5

    Article  Google Scholar 

  15. Zeng J, Deng Y, Vedantam P, Tzeng TR, Xuan X (2013) Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets. J of Magn and Magn Mater 346:118–123. https://doi.org/10.1016/j.jmmm.2013.07.021

    Article  Google Scholar 

  16. Vékás L, Raşa M, Bica D (2000) Physical properties of magnetic fluids and nanoparticles from magnetic and magneto-rheological measurements. J of Coll and Inter Sci 231:247–254. https://doi.org/10.1006/jcis.2000.7123

    Article  Google Scholar 

  17. Bompos DA, Nikolakopoulos PG (2016) Rotordynamic analysis of a shaft using magnetorheological and nanomagnetorheological fluid journal bearings. Tribo Trans 59(1):108–111. https://doi.org/10.1080/10402004.2015.1050137

    Article  Google Scholar 

  18. Osman TA, Nada GS, Safar ZS (2001) Static and dynamic characteristics of magnetized journal bearings lubricated with ferrofluids. Tribo Inter 34:369–380. https://doi.org/10.1016/S0301-679X(01)00017-2

    Article  Google Scholar 

  19. Laghrabli S, El Khlifi M, Nabhani M, Bou-saïd B (2017) Static characteristics of ferrofluid finite journal bearing considering rotational viscosity effect. Lubri Sci 29(4):203–226. https://doi.org/10.1002/ls.1364

    Article  Google Scholar 

  20. Laghrabli S, El Khlifi M, Nabhani M, Bou-saïd B (2017) Ferrofluid lubrication of finite journal bearings using Jenkins model. Lubri Sci 29(7):441–454. https://doi.org/10.1002/ls.1379

    Article  Google Scholar 

  21. Patel NS, Vakharia D, Deheri G (2017) Hydrodynamic journal bearing lubricated with a ferrofluid. Indus Lubri and Tribo 69(5):754–760. https://doi.org/10.1108/ILT-08-2016-0179

    Article  Google Scholar 

  22. Wang X, Li H, Lu W (2017) Stiffness and damping properties of (semi) floating ring bearing using magnetorheological fluids as lubricant. J Tribol 139(5):05170. https://doi.org/10.1115/1.4035773

    Article  Google Scholar 

  23. Shliomis MI (1972) Effective viscosity of magnetic suspensions. Soviet Phys 34(6):1291–1294

    Google Scholar 

  24. Shliomis MI (1974) Magnetic fluids. Sov Phys 17:153–169. https://doi.org/10.1070/PU1974v017n02ABEH004332

    Article  Google Scholar 

  25. Montazeri H (2009) Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid. Intelli Mater Syst and Struc 222(1):51–60. https://doi.org/10.1243/13506501JET314

    Article  MathSciNet  Google Scholar 

  26. Niklas M (1987) Influence of magnetic field on Taylor vortex formation in magnetic fluid. Z.Phys. B-Condensed Matter 68:493–501. https://doi.org/10.1007/BF01471080

    Article  Google Scholar 

  27. Christopherson DG (1941) A new mathematical method for the solution of film lubrication problems. Procee of the Insti of Mecha Eng 146(1):126–135. https://doi.org/10.1243/PIME_PROC_1941_146_027_02

    Article  MathSciNet  MATH  Google Scholar 

  28. Lund JW (1964) Spring and damping coefficients for the tilting pad journal bearing. ASLE Trans 7:342–352. https://doi.org/10.1080/05698196408972064

    Article  Google Scholar 

  29. Lin JR, Li PJ, Hung TC (2013) Effects of non-newtonian ferrofluids on the performance characteristics of long journal bearings. Flui Dyna and Mater Proc 9(4):419–434. https://doi.org/10.3970/fdmp.2013.009.419

    Article  Google Scholar 

  30. Tipei N (1983) Overall characteristics of bearings lubricated with ferrofluids. ASME Lubri Techno 105(3):466–475. https://doi.org/10.1115/1.3254645

    Article  Google Scholar 

  31. Frêne J, Nicolas D, Degueurce B, Berthe D, Godet M (1997) Dynamic characteristics of journal bearings. Dowson, D. (Eds), Hydrodynamic Lubrication: Bearings and Thrust Bearings, Elsevier Science, Great Britain. 172–211. ISBN:978–0–08–053431–2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nabhani.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlassi, K., Nabhani, M. & Khlifi, M.E. Rotational viscosity effect on the stability of finite journal bearings lubricated by ferrofluids. J Braz. Soc. Mech. Sci. Eng. 43, 548 (2021). https://doi.org/10.1007/s40430-021-03264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03264-2

Keywords

Navigation