Skip to main content
Log in

Estimation Techniques for Seismic Recurrence Parameters for Incomplete Catalogues

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In probabilistic seismic hazard analysis, assessment of the three recurrence parameters, namely the mean activity rate \(\lambda\), Gutenberg–Richter \(b\)-value, and maximum possible seismic event magnitude \(m_{\max }\), is paramount. Over the years, several assessment procedures have been developed, each with its advantages and disadvantages. Typically, estimation techniques for the mean activity rate \(\lambda\) and the Gutenberg–Richter \(b\)-value are discussed and evaluated separately from those designed for the maximum possible event magnitude \(m_{\max }\). Yet, the three parameters are typically defined in terms of joint distributions for \(\lambda\), \(b\), and \(m_{\max }\). In this study, we focused on systematically constructing joint distributions for the three recurrence parameters for considering complete and incomplete seismic event catalogues. The Bayesian formalism is introduced to constrain the parameter estimates with independent a priori information. Further, we discuss an iterative technique to solve the systems of equations sequentially. The procedures are compared and illustrated using Monte Carlo simulation and a seismic event catalogue for Cape Town, South Africa.

Article Highlights

  • Probabilistic seismic hazard analysis in case of incomplete catalogues

  • Assessment of the hazard recurrence parameters, activity rate \(\lambda\), frequency-magnitude Gutenberg–Richter \(b\)-value and area characteristic, maximum possible seismic event magnitude \(m_{\max}\)

  • Application of Bayesian formalism to constrain hazard parameters estimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: Pule et al. (2015). Adapted from Fernandez (1974)

Similar content being viewed by others

Availability of Data and Material

On request from corresponding author.

Code Availability

On request from corresponding author.

References

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bull Earthq Res Inst Univ Tokyo 43:237–239

    Google Scholar 

  • Alamilla JL, Rodriguez JA, Vai R (2020) Unification of different approaches to probabilistic seismic hazard analysis. Bull Seismol Soc Am. https://doi.org/10.1785/0120200148

    Article  Google Scholar 

  • Atkinson GM (2004) An overview of developments in seismic hazard analysis. Paper No. 5001. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada, August 1–6, 2004

  • AXCO Insurance Market Report on South Africa – Non-Life, AXCO

  • Beirlant J, Kijko A, Reynkens T, Einmahl JH (2019) Estimating the maximum possible earthquake magnitude using extreme value methodology: the Groningen case. Nat Hazards 98(3):1091–1113

    Article  Google Scholar 

  • Bender B (1988) Reliability of estimates of maximum earthquake magnitudes based on observed maxima. Seismol Res Lett 59(1):1–15

    Google Scholar 

  • Benjamin JR, Cornell CA (2014) Probability, statistics, and decision for civil engineers. Courier Corporation

  • Bommer JJ, Abrahamson NA (2006) Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bull Seismol Soc Am 96:1967–1977

    Article  Google Scholar 

  • Calais E, Camelbeeck T, Stein S, Liu M, Craig TJ (2016) A new paradigm for large earthquakes in stable continental plate interiors. Geophys Res Lett. https://doi.org/10.1002/2016GL070815

    Article  Google Scholar 

  • Cheng RH, Traylor L (1995) Non-regular maximum likelihood problems. J R Stat Soc Series B Stat Methodol 57:3–44

    Google Scholar 

  • Chinnery MA (1979) Investigations of the seismological input to the safety design of nuclear power reactors in New England. US Nuclear Regulatory Commission Report NUREG/CR-0563, 72 pp

  • Cooke P (1979) Statistical inference for bounds of random variables. Biometrika 66:367–374

    Article  Google Scholar 

  • Coppersmith KJ (1994) Conclusions regarding maximum earthquake assessment. In: Report: Johnston AC, Kanter LR, Coppersmith KJ Cornell CA (1994) The earthquakes of stable continental regions. vol 1: Assessment of large earthquake potential, Final Report, EPRI TR-102261-V1

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Article  Google Scholar 

  • Cornell CA (1994) Statistical analysis of maximum magnitudes in the earthquakes of stable continental regions. In: Report: Johnston AC, Kanter LR, Coppersmith KJ, Cornell CA (1994) The earthquakes of stable continental regions. vol. 1: Assessment of large earthquake potential, Final Report, EPRI TR-102261-V1

  • Cosentino P, Ficara V, Luzio D (1977) Truncated exponential frequency-magnitude relationship in the earthquake statistics. Bull Seismol Soc Am 67:1615–1623

    Article  Google Scholar 

  • Davies N, Kijko A (2003) Seismic risk assessment: with an application to the South African insurance industry. S Afr Actuar J 3:1–28

    Google Scholar 

  • Davison AC (2003) Statistical models. Cambridge. Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

  • Deichmann N (2006) Local magnitude, a moment revisited. Bull Seism Soc Am 96:1267–1277

    Article  Google Scholar 

  • Eadie WT, Drijard D, James FE (1971) Statistical methods in experimental physics. North-Holland, Amsterdam

    Google Scholar 

  • Esteva L (1969) Seismicity prediction: A Bayesian approach. Proc. of the Fourth World Conf. on Earthquake Engineering, Vol. 1, Santiago de Chile, Chile, 13–18 January

  • Esteva L (1970) Seismic risk and seismic design decisions. In: Hansen RJ (ed) Seismic Design for Nuclear Power Plants. MIT Press, Cambridge, Massachusetts, pp 142–182

    Google Scholar 

  • Fenton CH, Adams J, Halchuk S (2006) Seismic hazards assessment for radioactive waste disposal sites in regions of low seismic activity. Geotech Geol Eng 24:579–592. https://doi.org/10.1007/s10706-005-1148-4

    Article  Google Scholar 

  • Fernandez LM (1974) Some earthquake-resistant buildings recommendations. Seismological Series 4. Geological Survey South Africa, Pretoria

  • Gibowicz SJ, Kijko A (1994) An introduction to mining seismology. Academic Press, San Diego, p 396

    Google Scholar 

  • Gutenberg B, Richter CF (1942) Earthquake magnitude, intensity, energy, and acceleration. Bull Seismol Soc Am 32:163–191

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity, energy, and acceleration (second paper). Bull Seismol Soc Am 46:105–145

    Article  Google Scholar 

  • Hamilton RM (1967) Mean magnitude of an earthquake sequence. Bull Seismol Soc Am 57:1115–1126

    Article  Google Scholar 

  • Heaton T, Tajima F, Mori A (1986) Estimating ground motions using recorded accelerograms. Surv Geophys 8:25–83

    Article  Google Scholar 

  • Holschneider M, Zöller G, Hainzl S (2011) Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg-Richter model. Bull Seismol Soc Am 101:1649–1659

    Article  Google Scholar 

  • Isacks B, Oliver J (1964) Seismic waves with frequencies from 1 to 100 cycles per second recorded in a deep mine in northern New Jersey. Bull Seismol Soc Am 54:1941–1979

    Article  Google Scholar 

  • Ishimoto M, Iida K (1939) Observations of earthquakes registered with the micro seismograph constructed recently. Bull Earthq Res Inst Univ Tokyo 17:443–478

    Google Scholar 

  • Iervolino, I, Giorgio M (2015) Stochastic modeling of recovery from seismic shocks. 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, Canada, July 12–15, 2015

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. vol. 1, 2nd ed. John Willey & Sons, New York

  • Johnston AC (1994) Seismotectonic interpretations and conclusions from the Stable Continental Region Seismicity Database. In: Report: Johnston AC, Kanter LR, Coppersmith KJ, Cornell CA (1994) The earthquakes of stable continental regions. vol 1: Assessment of large earthquake potential, Final Report, EPRI TR-102261-V1

  • Kagan YY (2002a) Seismic moment distribution revisited: I. Statistical Results Geophys J Int 148(3):520–541. https://doi.org/10.1046/j.1365-246x.2002.01594.x

    Article  Google Scholar 

  • Kagan YY (2002b) Seismic moment distribution revisited: II. Moment Conserv Principle Geophys J Int 149:731–754. https://doi.org/10.1046/j.1365-246X.2002.01671.x

    Article  Google Scholar 

  • Kendall M, Stuart A (1967) The advanced theory of statistics in inference and relationship, vol 2. Griffin, London

    Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, mmax. Pure Appl Geophys 161:1655–1681

    Article  Google Scholar 

  • Kijko A (2012) On Bayesian procedure for maximum earthquake magnitude estimation. Res Geophys 2(1):7. https://doi.org/10.4081/rg.2012.e7

    Article  Google Scholar 

  • Kijko A, Graham G (1998) “Parametric-Historic” procedure for probabilistic seismic hazard analysis. Part I Assess Maximum Regional Magnitude mMax 152:413–442

    Google Scholar 

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134

    Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 59(4):674–700

    Article  Google Scholar 

  • Kijko A, Smit A (2012) Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bull Seismol Soc Am 102:1283–1287

    Article  Google Scholar 

  • Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bull Seismol Soc Am 106:1210–1222

    Article  Google Scholar 

  • LeCam L (1970) On the assumptions used to prove asymptotic normality of maximum likelihood estimates. Ann Statist 41:802–828

    Article  Google Scholar 

  • Manzunzu B, Brandt MBC, Midzi V, Durrheim RJ, Saunders I, Mulabisana TF (2021) Towards a homogeneous moment magnitude determination for earthquakes in South Africa: Reduction of associated uncertainties. J Afr Earth Sci 173:1–11

    Article  Google Scholar 

  • Marzocchi W, Sandri L (2003) A review and new insights on the estimation of the b-value and its uncertainty. Ann Geophys 46:1271–1282

    Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis, U.S. Geol Surv Open-File Report 76:1–67

    Google Scholar 

  • McGuire R (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37:329–338

    Article  Google Scholar 

  • Molchan GM, Keilis-Borok VL, Vilkovich V (1970) Seismicity and principal seismic effects. Geophys J Int 21:323–335. https://doi.org/10.1111/j.1365-246X.1970.tb01795.x

    Article  Google Scholar 

  • Mood AM, Graybill F, Boes DC (1974) Introduction to the theory of statistics. McGraw-Hill, Auckland

    Google Scholar 

  • Newmark NM, Rosenblueth E (1971) Fundamentals of earthquake engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Pagani MM, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M, Vigano D (2014) OpenQuake engine: an open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85:692–702

    Article  Google Scholar 

  • Page R (1968) Aftershocks and microaftershocks. Bull Seismol Soc Am 5:1131–1168

    Google Scholar 

  • Pisarenko VF (1991) Statistical evaluation of maximum possible magnitude, Izvestiya. Earth Phys 27:757–763

    Google Scholar 

  • Pisarenko VF, Lyubushin AA, Lysenko VB, Golubieva TV (1996) Statistical estimation of seismic hazard parameters: Maximum possible magnitude and related parameters. Bull Seismol Soc Am 86:691–700

    Article  Google Scholar 

  • Pisarenko V, Rodkin M (2017) The estimation of probability of extreme events for small samples. Pure Appl Geophys 174:1547–1560

    Article  Google Scholar 

  • Poggi V, Durrheim R, Tuluka GM, Weatherill G, Gee R, Pagani M, Nyblade A, Delvaux D (2017) Assessing seismic hazard of the East African rift: a pilot study from GEM and Africaarray. Bull Earthq Eng 15:4499–4529

    Article  Google Scholar 

  • Pule T, Fourie CJS, Kijko A, Midzi V (2015) Comparison and quantitative study of vulnerability/damage curves in South Africa. S Afr J Geol 118(4):335–354

    Article  Google Scholar 

  • Ordaz M, Giraldo S (2018) Joint maximum likelihood estimators for Gutenberg-Richter parameters λ0 and β using subcatalogs. Earthq Spectra 34:301–312

    Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its application, 2nd edn. Willey, New York

    Book  Google Scholar 

  • Raschke M (2015) Modeling of magnitude distributions by the generalized truncated exponential distribution. J Seismol 19:265–271

    Article  Google Scholar 

  • Rosenblueth E (1964) Probabilistic design to resist earthquakes. J Eng Mech ASCE 90(EM5):189–220

    Google Scholar 

  • Rosenblueth E (1986) Use of statistical data in assessing local seismicity. Earthq Eng Struct Dyn 14:325–337. https://doi.org/10.1002/eqe.4290140302

    Article  Google Scholar 

  • Rosenblueth E, Ordaz M (1987) Use of seismic data from similar regions. Earthq Eng Struct Dyn 15:619–634. https://doi.org/10.1002/eqe.4290150507

    Article  Google Scholar 

  • Stepp J (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the 1st International Conference on Microzonation, Seattle

  • Stevens VL, Avouac J-P (2017) Determination of Mmax from background seismicity and moment conservation. Bull Seismol Soc Am 107:2578–2596

    Article  Google Scholar 

  • Tate RF (1959) Unbiased estimation: Function of location and scale parameters. Ann Math Statist 30:331–366

    Article  Google Scholar 

  • Utsu T (1965) A method for determining the value of b in the formula log(n) = a–bM showing the magnitude-frequency relation for earthquakes (with English summary). Geophys Bull Hokkaido Univ 13:99–103

    Google Scholar 

  • Vermeulen PJ (2020) Problems in parameter estimation in probabilistic seismic hazard analysis and some solutions, PhD Thesis, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, February 2020, pp 139

  • Vermeulen PJ, Kijko A (2017) More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys 65:579–587. https://doi.org/10.1007/s11600-017-0048-3

    Article  Google Scholar 

  • Vermeulen PJ, Kijko A (2019) Joint maximum likelihood estimators for Gutenberg-Richter parameters λ0 and β using subcatalogs. Earthq Spectra 35:1053–1058

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346

    Article  Google Scholar 

  • Weichert DH, Kijko A (1989) Estimation of earthquake recurrence parameters from incomplete and variably complete catalogue. Seismol Res Lett 60:28

    Google Scholar 

  • Wheeler RL (2009) Methods of Mmax estimation east of Rocky Mountains. USGS, Open-File Report 2009–1018

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kijko.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kijko, A., Vermeulen, P.J. & Smit, A. Estimation Techniques for Seismic Recurrence Parameters for Incomplete Catalogues. Surv Geophys 43, 597–617 (2022). https://doi.org/10.1007/s10712-021-09672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09672-2

Keywords

Navigation