Skip to main content
Log in

The Longitudinal Profile of a Stream Contaminated With 2,4-D and its Effects on Non-Target Species

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Pesticides can cause harmful effects to aquatic communities, even at concentrations below the threshold limit established as guidelines for the water bodies by environmental agencies. In this research, an input of the herbicide 2,4-dichlorophenoxyacetic acid (i.e., 2,4-D) was simulated under controlled conditions in a 500-m-long reach of a first-order tropical stream in Southeastern Brazil. Two water samplings at eight stations investigated the stream longitudinal contamination profile. The ecotoxicological effects were analyzed using Eruca sativa L. seed germination assays and the acute and chronic toxicity tests with the neotropical cladoceran Ceriodaphnia silvestrii. Physicochemical parameters of water quality were evaluated to characterize the study area and quantify 2,4-D concentrations along the stream to assess pesticide retention. The 2,4-D concentration was reduced by approximately 50% downstream in the samplings, indicating that the herbicide was retained along the stream. Moreover, C. silvestrii reproduction in long-term assays decreased approximately 50% in the stations with higher concentrations of 2,4-D than the laboratory control. After contamination, E. sativa L. showed a lower average root growth (1.0 cm), statistically different from the control (2.2 cm). On the other hand, similar growth values were obtained among the background and the most downstream stations. Our study highlighted the relevance of reviewing and updating herbicide guidelines and criteria to prevent possible ecological risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABNT (2016) Associação Brasileira de Normas Técnicas. Ecotoxicologia aquática - Toxicicidade aguda - Método de ensaio com Daphnia spp. (Crustacea, Cladocera). NBR12713

  • ABNT (2017) Associação Brasileira de Normas Técnicas. Ecotoxicologia aquática - Toxicidade crônica - Método de ensaio com Ceriodaphnia spp. (Crustacea, Cladocera). NBR13373

  • Atamaniuk TM, Kubrak OI, Storey KB, Lushchak VI (2013) Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology 22:1498–1508. https://doi.org/10.1007/s10646-013-1136-z

    Article  CAS  Google Scholar 

  • Belgers JDM, Van Lieverloo RJ, Van der Pas LJT, Van den Brink PJ (2007) Effects of the herbicide 2,4-D on the growth of nine aquatic macrophytes. Aquat Bot 86:260–268. https://doi.org/10.1016/j.aquabot.2006.11.002

    Article  CAS  Google Scholar 

  • Borges S, Dzubow C, Orrick G, Stavola A (2004) 2,4-Dichlorophenoxyacetic Acid analysis of risks to endangered and threatened salmon and steelhead

  • Brasil (2017) Resolution N. 166, July 24th, 2017. Provides for the validation of analytical methods and other measures

  • Brazil (2005) CONAMA Resolution N. 357, March 17th, 2005. Provides for the classification of water bodies and environmental guidelines for their classification

  • Brazil (2021) Ministry of Health. Potability Standard. Ordinance 888, of May 4th, 2021. 29

  • Brovini EM, de Deus BCT, Vilas-Boas JA et al (2021) Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. Sci Total Environ 771:144754. https://doi.org/10.1016/j.scitotenv.2020.144754

    Article  CAS  Google Scholar 

  • Cenkci S, Yildiz M, Ciĝerci IH et al (2010) Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf 73:1558–1564. https://doi.org/10.1016/j.ecoenv.2010.07.033

    Article  CAS  Google Scholar 

  • CETESB (2017) Companhia Ambiental do Estado de São Paulo. Qualidade das Águas Interiores no Estado de São Paulo. Relatórios, São Paulo

    Google Scholar 

  • Charalampous N, Kindou A, Vlastos D et al (2015) (2015) A multidisciplinary assessment of river surface water quality in areas heavily influenced by human activities. Arch Environ Contam Toxicol 692(69):208–222. https://doi.org/10.1007/S00244-015-0152-9

    Article  Google Scholar 

  • CONAB (2020) Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de cana-de-açúcar (2020/2021). 7:62

  • de Castro Marcato AC, de Souza CP, Fontanetti CS (2017) Herbicide 2,4-D: a review of toxicity on non-target organisms. Water Air Soil Pollut 228:120. https://doi.org/10.1007/s11270-017-3301-0

    Article  CAS  Google Scholar 

  • Dehnert GK, Freitas MB, DeQuattro ZA et al (2018) Effects of low, subchronic exposure of 2,4-Dichlorophenoxyacetic acid (2,4-D) and commercial 2,4-D formulations on early life stages of fathead minnows ( Pimephales promelas ). Environ Toxicol Chem 37:2550–2559. https://doi.org/10.1002/etc.4209

    Article  CAS  Google Scholar 

  • Dolui D, Saha I, Adak MK (2021) 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. Ecotoxicol Environ Saf 208:111708. https://doi.org/10.1016/j.ecoenv.2020.111708

    Article  CAS  Google Scholar 

  • Ebke KP, Felten C, Dören L (2013) Impact of heterophylly on the sensitivity of Myriophyllum aquaticum biotests. Environ Sci Eur 25:1–9. https://doi.org/10.1186/2190-4715-25-6

    Article  Google Scholar 

  • Elias D, Bernot MJ (2017) Pesticide and nitrate transport in an agriculturally influenced stream in Indiana. Environ Monit Assess 189:1–16. https://doi.org/10.1007/s10661-017-5870-1

    Article  CAS  Google Scholar 

  • FAO (2020) Food and agriculture organization of the United Nations. FAOSTAT, Agri-environmental Indicators / Pesticides

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science (80). 341:752–758

  • Freitas JS, Girotto L, Goulart BV et al (2019) Effects of 2,4-D-based herbicide (DMA® 806) on sensitivity, respiration rates, energy reserves and behavior of tadpoles. Ecotoxicol Environ Saf 182:109446. https://doi.org/10.1016/J.ECOENV.2019.109446

    Article  CAS  Google Scholar 

  • Frimpong JO, Ofori ESK, Yeboah S et al (2018) Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. Ecotoxicol Environ Saf 156:205–215. https://doi.org/10.1016/j.ecoenv.2018.03.034

    Article  CAS  Google Scholar 

  • Gaaied S, Oliveira M, Le Bihanic F et al (2019) Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. Chemosphere 224:289–297. https://doi.org/10.1016/j.chemosphere.2019.02.125

    Article  CAS  Google Scholar 

  • Gamble DS (2009) Herbicide sorption by immersed soils: stoichiometry and the law of mass action in support of predictive kinetics. Environ Sci Technol 43:1930–1934. https://doi.org/10.1021/es8025177

    Article  CAS  Google Scholar 

  • Goulart BV, Vizioli BDC, Espindola ELG, Montagner CC (2020) Matrix effect challenges to quantify 2,4-D and fipronil in aquatic systems. Environ Monit Assess 192:797. https://doi.org/10.1007/s10661-020-08776-3

    Article  CAS  Google Scholar 

  • Guarda PM, Pontes AMS, de Domiciano R, S, et al (2020) Assessment of ecological risk and environmental behavior of pesticides in environmental compartments of the Formoso River in Tocantins, Brazil. Arch Environ Contam Toxicol 79:524–536. https://doi.org/10.1007/s00244-020-00770-7

    Article  CAS  Google Scholar 

  • INMET (2021) National Institute of Meteorology. Ministry of Agriculture and Livestock Database. https://portal.inmet.gov.br. Accessed 10 Jun 2021

  • Inmetro (2018) National Institute of Metrology, Quality and Technology - DOQ-CGCRE-008: Guidance on Validation of Analytical Methods, Revision 7

  • Islam F, Wang J, Farooq MA et al (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351. https://doi.org/10.1016/j.envint.2017.10.020

    Article  CAS  Google Scholar 

  • Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  Google Scholar 

  • Kwon JW, Armbrust KL (2006) Degradation of chlorothalonil in irradiated water/sediment systems. J Agric Food Chem 54:3651–3657. https://doi.org/10.1021/jf052847q

    Article  CAS  Google Scholar 

  • Magnoli K, Carranza CS, Aluffi ME et al (2020) Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A Review Environ Sci Pollut Res 27:1–12

    Article  Google Scholar 

  • Moreira RA, Rocha GS, da Silva LCM et al (2020) Exposure to environmental concentrations of fipronil and 2,4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata. Ecotoxicol Environ Saf 206:111180. https://doi.org/10.1016/j.ecoenv.2020.111180

    Article  CAS  Google Scholar 

  • Moreira RA, Araújo CVM, da Silva J, Pinto T et al (2021) Fipronil and 2,4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? Chemosphere 263:127972. https://doi.org/10.1016/j.chemosphere.2020.127972

    Article  CAS  Google Scholar 

  • Nalcaci OO, Sirin S, Ovez B (2006) Toxicity determination of various phenoxyalkanoic acid herbicides using cress seed in phosphate contaminated aqueous media. WIT Trans Ecol Environ 95:301–307. https://doi.org/10.2495/WP060311

    Article  CAS  Google Scholar 

  • Nørgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17:957–967. https://doi.org/10.1007/s11356-009-0284-4

    Article  CAS  Google Scholar 

  • Nowell LH, Capel PD, Dileanis PD (2010) Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors., Boca Raton. Lewis Publishers

  • Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res Mutat Res 567:109–149. https://doi.org/10.1016/J.MRREV.2004.08.003

    Article  CAS  Google Scholar 

  • Özkul M, Özel ÇA, Yüzbaşıoğlu D, Ünal F (2016) Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology 68:2395–2405. https://doi.org/10.1007/s10616-016-9956-3

    Article  CAS  Google Scholar 

  • Park K, Park J, Kim J, Kwak I-S (2010) Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp Biochem Physiol Part C Toxicol Pharmacol 151:439–446. https://doi.org/10.1016/j.cbpc.2010.01.009

    Article  CAS  Google Scholar 

  • Pinto TJ da S, Moreira RA, Silva LCM da, et al (2021c) Impact of 2,4-D and fipronil on the tropical midge Chironomus sancticaroli (Diptera: Chironomidae). Ecotoxicol Environ Saf 209:111778

  • Pinto TJ da S, Freitas JS, Moreira RA, et al (2021a) Functional responses of Hyalella meinerti after exposure to environmentally realistic concentrations of 2,4-D, fipronil, and vinasse (individually and in mixture). Aquat Toxicol 231:105712. https://doi.org/10.1016/j.aquatox.2020.105712

  • Pinto TJ da S, Moreira RA, da Silva LCM, et al (2021b) Toxicity of fipronil and 2,4-D formulations (alone and in a mixture) to the tropical amphipod Hyalella meinerti. Environ Sci Pollut Res, https://doi.org/10.1007/s11356-021-13296-9

  • Pollack N, Cunningham AR, Rosenkranz HS (2003) Environmental persistence of chemicals and their carcinogenic risks to humans. Mutat Res Mol Mech Mutagen 528:81–91. https://doi.org/10.1016/S0027-5107(03)00097-6

    Article  CAS  Google Scholar 

  • Relyea RA (2009) A cocktail of contaminants: How mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159:363–376. https://doi.org/10.1007/s00442-008-1213-9

    Article  Google Scholar 

  • Rydh Stenström J, Kreuger J, Goedkoop W (2021) Pesticide mixture toxicity to algae in agricultural streams – Field observations and laboratory studies with in situ samples and reconstituted water. Ecotoxicol Environ Saf 215:112153. https://doi.org/10.1016/j.ecoenv.2021.112153

    Article  CAS  Google Scholar 

  • Salman JM, Hameed BH (2010) Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 256:129–135. https://doi.org/10.1016/j.desal.2010.02.002

    Article  CAS  Google Scholar 

  • Silva LCM, Daam MA, Gusmao F (2020a) Acclimation alters glyphosate temperature-dependent toxicity: Implications for risk assessment under climate change. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121512

    Article  Google Scholar 

  • Silva LCM, Moreira RA, Pinto TJS et al (2020b) Acute and chronic toxicity of 2,4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicology. https://doi.org/10.1007/s10646-020-02275-4

    Article  Google Scholar 

  • Ter Braak CJF (2009) Program CANOCO Version 4.56. Plant Research International, Wageningen University and Research Centre.

  • Triques MC, Oliveira D, Veloso Goulart B et al (2021) Assessing single effects of sugarcane pesticides fipronil and 2,4-D on plants and soil organisms. Ecotoxicol Environ Saf 208:111622. https://doi.org/10.1016/j.ecoenv.2020.111622

    Article  CAS  Google Scholar 

  • Tunić T, Knežević V, Kerkez Đ et al (2015) Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water–sediment system as an additional test in risk assessment of herbicides. Environ Toxicol Chem 34:2104–2115. https://doi.org/10.1002/etc.3034

    Article  CAS  Google Scholar 

  • Turetta APD, Kuyper T, Malheiros TF, da Coutinho HL, C, (2017) A framework proposal for sustainability assessment of sugarcane in Brazil. Land Use Policy 68:597–603. https://doi.org/10.1016/j.landusepol.2017.08.011

    Article  Google Scholar 

  • USEPA (1996) United States Environmental Protection Agency. Ecological Effects Test Guidelines, OPPTS 850.4200, Seed Germination/Root Elongation Toxicity Test. EPA 712-C-96–154. 7170

  • Wood RJ, Mitrovic SM, Lim RP, Kefford BJ (2016) How benthic diatoms within natural communities respond to eight common herbicides with different modes of action. Sci Total Environ 557–558:636–643. https://doi.org/10.1016/j.scitotenv.2016.03.142

    Article  CAS  Google Scholar 

  • Zuanazzi NR, Ghisi N de C, Oliveira EC (2020) Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: a scientometric review. Chemosphere 241

Download references

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), 2017/50397–5, 2015/18790–3, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 140599/2020–7, Isabele Baima Ferreira Freitas, 140411/2018–6, Allan Pretti Ogura

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IBFF, APO; Methodology: IBFF, APO, ELGE; Formal analysis: IBFF, APO; Investigation: IBFF, APO, ASC, MSF, BVG; Data curation: IBFF, APO; Writing - Original Draft: IBFF, APO; Writing – Review & Editing: IBFF, APO, DGFC, MSF, ELGE; Supervision: DGFC, CCM, ELGE; Project administration: IBFF, APO; Funding Acquisition: CCM, ELGE

Corresponding author

Correspondence to Isabele Baima Ferreira Freitas.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors

Additional information

Isabele Baima Ferreira Freitas and Allan Pretti Ogura have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, I.B.F., Ogura, A.P., Cunha, D.G.F. et al. The Longitudinal Profile of a Stream Contaminated With 2,4-D and its Effects on Non-Target Species. Arch Environ Contam Toxicol 82, 131–141 (2022). https://doi.org/10.1007/s00244-021-00903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00903-6

Navigation