Skip to main content
Log in

Kardiale Kontraktilitätsmodulation

Cardiac contractility modulation

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Herzinsuffizienz stellt eine der größten medizinischen Herausforderungen in den nächsten Jahren dar, mit steigenden Fallzahlen infolge der Alterung der Gesellschaft. Sie geht mit schlechter Prognose und eingeschränkter Lebensqualität einher – trotz ständiger Verbesserung der medikamentösen Therapie, die zu einer stetigen Abnahme der Sterblichkeit und Zunahme der Lebensqualität geführt hat. Für therapierefraktäre Patienten mit eingeschränkter linksventrikulärer (LV-) Funktion, Linksschenkelblock und verbreitertem QRS-Komplex (≥ 130 ms) ist die kardiale Resynchronisationstherapie (CRT) der Goldstandard in Ergänzung zur medikamentösen Therapie. Darüber hinaus sind andere Verfahren wie die Vagusstimulation in der klinischen Prüfung, die aber noch keine generelle Therapieempfehlung haben. Insgesamt repräsentieren CRT-Patienten jedoch nur ein Drittel aller Patienten mit Herzinsuffizienz, und darüber hinaus sind 25 % der CRT-Patienten „Non-Responder“, die nicht von der CRT profitieren.

Bei Patienten mit Herzinsuffizienz, einer linksventrikulären Ejektionsfraktion (LVEF) zwischen 25 und 45 % und einer QRS-Dauer < 130 ms, die nicht für eine CRT geeignet sind, stellt heutzutage die kardiale Kontraktilitätsmodulation (CCM) eine Therapieoption dar, die sich in mehreren randomisierten Studien als effektiv und sicher herausgestellt hat. Sie verringert die Häufigkeit von Krankenhausaufenthalten infolge der Herzinsuffizienz und verbessert deren Symptome, die funktionelle Kapazität und die Lebensqualität. Das Ziel dieser Arbeit ist es, die Wirkmechanismen, die Studienlage, die derzeitigen Indikationen und die neueren Entwicklungen der CCM-Therapie zur Behandlung von Patienten mit chronischer Herzinsuffizienz darzustellen.

Abstract

Heart failure (HF) will be one of the biggest medical challenges in the coming years, with increasing prevalence in an aging society. It is associated with a poor prognosis and impaired quality of life—despite steadily improving medical therapy which has resulted in a steady decrease in mortality and an increase in quality of life. In medically refractory patients with impaired left ventricular (LV) function, left bundle branch block and wide QRS complex (≥130 ms) cardiac resynchronization therapy (CRT) in addition to medical therapy has become the gold standard. Additionally, other therapeutic modalities such as vagal stimulation are being clinically tested but as yet have no general therapeutic recommendation. Overall, CRT patients represent only one-third of all HF patients and about 25% are “non-responders” who do not benefit from CRT.

In HF patients with an LVEF between 25 and 45% and a QRS duration <130 ms who are not suitable for CRT, cardiac contractility modulation (CCM) is currently a therapeutic option that has been shown in several randomized trials to be efficacious and safe. It reduces the frequency of HF hospitalizations and improves HF symptoms, functional capacity, and quality of life. The goal of this article is to present mechanisms of action, major clinical studies, current indications, and recent developments of CCM for the treatment of patients with chronic HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Burkhoff D, Ben-Haim SA (2005) Nonexcitatory electrical signals for enhancing ventricular contractility: rationale and initial investigations of an experimental treatment for heart failure. Am J Physiol Heart Circ Physiol 288:H2550–6

    Article  CAS  Google Scholar 

  2. Lawo T, Borggrefe M, Butter C et al (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 46:2229–2236

    Article  Google Scholar 

  3. Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853

    Article  Google Scholar 

  4. Bristow MR, Saxon LA, Boehmer J et al (2004) Comparison of medical therapy, pacing, and defibrillation in heart failure (COMPANION) investigators. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150

    Article  CAS  Google Scholar 

  5. Beshai JF, Grimm RA, Nagueh SF, RethinQ Study Investigators et al (2007) Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N Engl J Med 357:2461–2471

    Article  CAS  Google Scholar 

  6. Shenkman HJ, Pampati V, Khandelwal AK et al (2002) Congestive heart failure and QRS duration: establishing prognosis study. Chest 122:528–534

    Article  Google Scholar 

  7. Lund LH, Jurga J, Edner M et al (2013) Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. Eur Heart J 34:529–539

    Article  CAS  Google Scholar 

  8. Maggioni AP, Dahlström U, Filippatos G et al (2010) Heart failure association of ESC (HFA). EURObservational research programme: the heart failure pilot survey (ESC-HF pilot). Eur J Heart Fail 12:1076–1084

    Article  Google Scholar 

  9. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC committee for practice guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2010 of the European society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  Google Scholar 

  10. Sabbah HN, Haddad W, Mika Y et al (2001) Cardiac contractilty modulation with the impulse dynamics signal: studies in dogs with chronic heart failure. Heart Fail Rev 6:45–53

    Article  CAS  Google Scholar 

  11. Mohri S, He KL, Dickstein M et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282:H1642–7

    Article  CAS  Google Scholar 

  12. Morita H, Suzuki G, Haddad W et al (2003) Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Fail 9:69–75

    Article  Google Scholar 

  13. Imai M, Rastogi S, Gupta RC et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49:2120–2128

    Article  Google Scholar 

  14. Pappone C, Rosanio S, Burkhoff D et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 90:1307–1313

    Article  Google Scholar 

  15. Pappone C, Vicedomini G, Salvati A et al (2001) Electrical modulation of cardiac contractility: clinical aspects in congestive heart failure. Heart Fail Rev 6:55–60

    Article  CAS  Google Scholar 

  16. Butter C, Wellnhofer E, Schlegl M et al (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13:137–142

    Article  Google Scholar 

  17. Nelson GS, Berger RD, Fetics BJ et al (2000) Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 102:3053–3059

    Article  CAS  Google Scholar 

  18. Pappone C, Augello G, Rosanio S et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15:418–427

    Article  Google Scholar 

  19. Yu CM, Chan JY, Zhang Q et al (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2:1341–1349

    Article  Google Scholar 

  20. Blank M, Goodman R (2004) Initial interactions in electromagnetic field-induced biosynthesis. J Cell Physiol 199:359–363

    Article  CAS  Google Scholar 

  21. Butter C, Rastogi S, Minden HH et al (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51:1784–1789

    Article  CAS  Google Scholar 

  22. Stix G, Borggrefe M, Wolpert C et al (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25:650–655

    Article  Google Scholar 

  23. Neelagaru SB, Sanchez JE, Lau SK et al (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3:1140–1147

    Article  Google Scholar 

  24. Borggrefe MM, Lawo T, Butter C et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29:1019–1028

    Article  Google Scholar 

  25. Kadish A, Nademanee K, Volosin K et al (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161:329–337

    Article  Google Scholar 

  26. Burkhoff D, Parides M, Borggrefe M et al (2009) ‘Responder analysis’ for assessing effectiveness of heart failure therapies based on measures of exercise tolerance. J Card Fail 15:108–115

    Article  Google Scholar 

  27. Abraham WT, Nademanee K, Volosin K et al (2011) Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 17:710–717

    Article  Google Scholar 

  28. Schau T, Seifert M, Meyhöfer J et al (2011) Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace 13:1436–1444

    Article  Google Scholar 

  29. Abraham WT, Kuck KH, Goldsmith RL et al (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. https://doi.org/10.1016/j.jchf.2018.04.010

    Article  PubMed  Google Scholar 

  30. Kuschyk J, Falk P, Demming T et al (2021) Long-term clinical experience with cardiac contractility modulation therapy delivered by the optimizer smart system. Eur J Heart Fail 23:1160–1169

    Article  CAS  Google Scholar 

  31. Wiegn P, Chan R, Jost C et al (2020) Safety, performance, and efficacy of cardiac contractility modulation delivered by the 2‑lead optimizer smart system: the FIX-HF-5C2 study. Circ Heart Fail 13:e6512

    Article  CAS  Google Scholar 

  32. Nägele H, Behrens S, Eisermann C (2008) Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. Europace 10:1375–1380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Kuck.

Ethics declarations

Interessenkonflikt

K.-H. Kuck, A. Ujeyl, J. Vogler und R.R. Tilz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuck, KH., Ujeyl, A., Vogler, J. et al. Kardiale Kontraktilitätsmodulation. Herz 46, 533–540 (2021). https://doi.org/10.1007/s00059-021-05071-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-021-05071-w

Schlüsselwörter

Keywords

Navigation