Skip to main content
Log in

Cyclic nature of the biotic attributes of macroinvertebrate communities in the Cenomanian–Turonian strata of Sinai: water depth-driven biological responses

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The analysis of high-resolution stratigraphic data from the Cenomanian–Turonian successions in three sections from Sinai (northeast Egypt) revealed the mechanisms behind water depth-driven biological responses (visible in changes of biodiversity and community structure) of macroinvertebrates. Quantitative biostratigraphical analysis of 127 samples containing 6203 specimens representing 41 genera of molluscs, corals, and echinoids were used to construct changes in the community structure of Cenomanian–Turonian macroinvertebrates. We identified six assemblages that we assigned to two main categories and linked to regional sea-level changes. The first group of assemblages is associated with the initiation of transgression and/or late normal regression, is dominated mainly by opportunistic, epifaunal suspension feeders (oyster bivalves) and is characterized by lower diversity values (low Shannon Index and high dominance). The second category is associated with the maximum flooding zone and dominated by infaunal deposit feeders such as irregular echinoids and by nektonic ammonites and is characterized by higher diversity. The increase in nektonic and decrease in benthic taxa during the latest Cenomanian suggest deepening of the environment. Moreover, the change in the water depth was accompanied by a change in the structure of the macrobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbott ST, Carter RM (1997) Macrofossil associations from mid-Pleistocene cyclothems, Castlecliff section, New Zealand: implications for sequence stratigraphy. Palaios 12:182–210

    Google Scholar 

  • Abdel-Fattah ZA, Kora MA, Raafat SA (2018) Depositional environments and sequence stratigraphy of a mixed siliciclastic–carbonate ramp: an example from the Cenomanian to Turonian Galala Formation in the northern Eastern Desert, Egypt. J Afr Earth Sci 147:352–373

    Google Scholar 

  • Abdelhady AA, Elshekhipy AA (2020) Niche partitioning among the Mesozoic echinoderms: biotic vs abiotic traits. Arab J Geosci 13(17):1–14

    Google Scholar 

  • Abdelhady AA, Fürsich FT (2014) Macroinvertebrate palaeo–communities from the Jurassic succession of Gebel Maghara (Sinai, Egypt). J Afr Earth Sc 97:173–193

    Google Scholar 

  • Abdelhady AA, Fürsich FT (2015) Sequence architecture of a Jurassic ramp succession from Gebel Maghara (North Sinai, Egypt): implications for eustasy. J Palaeogeogr 4:305–330

    Google Scholar 

  • Abdelhady AA, Mohamed RSA (2017) Paucispecific macroinvertebrate communities in the Upper Cretaceous of El Hassana Dome (Abu Roash, Egypt): environmental controls vs adaptive strategies. Cretac Res 74:120–136

    Google Scholar 

  • Abdelhady AA, Seuss B, El-Dawy MH, Obaidalla NH, Mahfouz K, Hussien SAA (2018) The Unitary Association method in biochronology and its potential stratigraphic resolving power: a case study from Paleocene-Eocene strata of southern Egypt. Geobios 51(4):259–268

    Google Scholar 

  • Abdelhady AA, Kassab W, Aly MF (2019a) Shoal environment as a biodiversity hotspot: A case from the Barremian-Albian strata of Gabal Lagama (North Sinai, Egypt). J Afr Earth Sci 160:103643

    Google Scholar 

  • Abdelhady AA, Mohamed RSA, Fathy D, Ali A (2020) Benthic invertebrate communities as a function of sea–level fluctuations and hydrodynamics: a case from the Cenomanian-Turonian of Wadi Tarfa (Eastern Desert, Egypt). J Afr Earth Sci 168:103870

    Google Scholar 

  • Abdelhady AA, Farouk S, Ahmed F, Alamri Z, Al-Kahtani K (2021) Impact of the late Cenomanian sea-level rise on the south Tethyan coastal ecosystem in the Middle East (Jordan, Egypt, and Tunisia): a quantitative eco-biostratigraphy approach. Palaeogeogr Palaeoclimatol Palaeoecol 574(4):10446

    Google Scholar 

  • Abdelhady AA, Fürsich FT( 2015b) Quantitative biostratigraphy of the Middle to Upper Jurassic strata of Gebel Maghara (Sinai, Egypt). Newslett Stratigr 48:23 46.

  • Abdelhady AA, Seuss B, Hassan H (2019b) Stratigraphic ranking of selected invertebrate fossils: A quantitative approach at different temporal and geographic scales. Paleontol Electron. https://doi.org/10.26879/912

  • Abdel-Raheem KHM, Ali MSM, Azab MM, Abdelhady AA (2020) Paleoecology and paleobiogeography of the Cenomanian-Turonian bivalves from the Southern Galala Plateau (Eastern Desert, Egypt). J Afr Earth Sci 168:1.3873

    Google Scholar 

  • Abu Sharib A, Abdel-Fattah MM, Salama YF, Abdel-Gawad GI (2017) Extension–related buttress–like folds, the western side of the Gulf of Suez rift, Egypt. Int J Earth Sci 106:2527–2547

    Google Scholar 

  • Baldermann A, Warr LN, Grathoff GH, Dietzel M (2013) The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays Clay Miner 61(3):258–276

    Google Scholar 

  • Bauer J, Kuss J, Steuber T (2002) Platform environments, microfacies and systems tracts of the Upper Cenomanian-Lower Santonian of Sinai. Egypt Facies 47:1–25

    Google Scholar 

  • Bauer J, Kuss J, Steuber T (2003) Sequence architecture and carbonate platform configuration (Late Cenomanian-Santonian), Sinai, Egypt. Sedimentology 50:387–414

    Google Scholar 

  • Boggs S Jr (2001) Principles of sedimentology and stratigraphy. Pearson Education, London

    Google Scholar 

  • Brett CE (1995) Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597–616

    Google Scholar 

  • Brett CE (1998) Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241–262

    Google Scholar 

  • Brett CE, Hendy AJW, Bartholomew AJ, Bonelli JR, McLaughlin PI (2007) Response of shallow marine biotas to sea–level fluctuations: a review of faunal replacement and the process of habitat tracking. Palaios 22:228–244

    Google Scholar 

  • Cherif OH, Al-Rifaiy IA, Al-Afifi FI, Orabi OH (1989) Planktonic foraminifera and chronostratigraphy of Senonian exposures in west–central Sinai, Egypt. Rev Micropaleontol 32:167–184

    Google Scholar 

  • Cherns L, Wright VP (2009) Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24(11):756–771

    Google Scholar 

  • Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10):2717–2727

    Google Scholar 

  • Davtalab E, Ghasemi-Nejad E, Vahidinia M, Ashouri A (2017) Palynofacies-based sequence stratigraphy of the Upper Cretaceous strata (Abderaz Formation) in east of Koppeh-Dagh Basin, Northeast of Iran. Geopersia 7(2):153–168

    Google Scholar 

  • de Araujo CM, Mendonça Filho JG, Menezes TR (2006) Palynofacies and sequence stratigraphy of the Aptian-Albian of the Sergipe Basin, Brazil. Sediment Geol 192(1–2):57–74

    Google Scholar 

  • El–Hedeny MM, El–Sabbagh AM, (2005) Eoradiolites liratus (Bivalvia, Radiolitidae) from the upper Cenomanian Galala Formation at Saint Paul, Eastern Desert (Egypt). Cretac Res 26:551–566

    Google Scholar 

  • El-Sabbagh AM, Nagm E, Mansour AS, El-Hedeny MM, Abdelaal AA, Mansour HN, Rashwan MA (2021) Palaeoecological and palaeoenvironmental analyses of Cenomanian–early Turonian macrobenthic faunas from the northern Eastern Desert of Egypt. Cretac Res 125:104853

    Google Scholar 

  • Fall LM, Olszewski TD (2010) Environmental disruptions influence taxonomic composition of brachiopod paleocommunities in the Middle Permian Bell Canyon Formation (Delaware Basin, West Texas). Palaios 25:247–259

    Google Scholar 

  • Farouk S (2015) Upper Cretaceous sequence stratigraphy of the Galala plateaux, western side of the Gulf of Suez, Egypt. Mar Pet Geol 70:136–158

    Google Scholar 

  • Farouk S, Ahmad F, Powell JH (2017) Cenomanian-Turonian stable isotope signatures and depositional sequences in northeast Egypt and central Jordan. J Asian Earth Sci 134:207–230

    Google Scholar 

  • Farouk S, Jain S, Hosny A, Al-Kahtany K, Diab M, Zahran E (2021) Cenomanian-Turonian facies, sequence stratigraphy and sea–level changes from east–central Sinai (Egypt). Cretac Res 123:104777

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Anal Interp Appl. https://doi.org/10.1007/978-3-662-08726-8

    Article  Google Scholar 

  • Frazier WJ, Schwimmer DR (1987) The Zuni Sequence: Middle Jurassic Upper Cretaceous. In: Frazier WJ, Schwimmer DR (eds.) Regional Stratigraphy of North America. Springer plenum press New York, pp 135–201. https://doi.org/10.1007/978-1-4613-1795-1_8

  • Fung MK, Katz ME, Miller KG, Browning JV, Rosenthal Y (2019) Sequence stratigraphy, micropaleontology, and foraminiferal geochemistry, Bass River, New Jersey paleoshelf, USA: Implications for Eocene ice-volume changes. Geosphere 15(2):502–532

    Google Scholar 

  • Fürsich FT (1981) Salinity-controlled benthic associations from the Upper Jurassic of Portugal. Lethaia 14:203–223

    Google Scholar 

  • Fürsich FT, Aberhan M (1990) Significance of time-averaging for palaeocommunity analysis. Lethaia 23:143–152

    Google Scholar 

  • Fürsich FT, Oschmann W (1993) Shell beds as a tool in basin analysis: the Jurassic of Kachchh, western India. J Geol Soc Lond 150:169–185

    Google Scholar 

  • Fürsich FT, Pandey DK (2003) Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeogr Palaeoclimatol Palaeoecol 193:285–309

    Google Scholar 

  • Fürsich FT, Werner W, Schneider S (2009) Bivalve concentrations in the Upper Jurassic of Portugal. Palaeobiodivers Palaeoenviron 1:161–190

    Google Scholar 

  • Galster F, Guex J, Hammer Ø (2010) Neogene biochronology of Antarctic diatoms, a comparison between two quantitative approaches, CONOP and UAgraph. Palaeogeogr Palaeoclimatol Palaeoecol 285:237–247

    Google Scholar 

  • Geological Survey of Egypt (1994) Geological map of Sinai, Egypt (sheet no. 1 and 3), scale 1:250,000

  • Gertsch B, Keller G, Adatte T, Berner Z, Kassab AS, Tantawy AAA, El–Sabbagh AM, Stueben D, (2010) Cenomanian-Turonian transition in a shallow water sequence of the Sinai, Egypt. Int J Earth Sci 99(1):165–182

    Google Scholar 

  • Ghorab MA (1961) Abnormal stratigraphic feature in Ras Gharib oil field. 3rd Arab Petroleum Congress, Alexandria, Egypt

  • Guensburg TE, Sprinkle J (1992) Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407–410

    Google Scholar 

  • Guex J (1991) Biochronological Correlations. Springer Publishing Company, Berlin

  • Guex J, Galster F, Hammer Ø (2015) Discrete biochronological time scales. Springer, Berlin. https://doi.org/10.1007/978-3-319-21326-2

    Book  Google Scholar 

  • Guiraud R, Bosworth W (1999) Phanerozoic geo–dynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics 315(1):73–104

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hammer Ø, Harper DAT (2006) Paleontological data analysis. Wiley-Blackwell, UK, p 351. https://doi.org/10.1002/9780470750711

  • Haq BU (2014) Cretaceous eustasy revisited. Global Planet Chang 113:44–58

    Google Scholar 

  • Haq B, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Google Scholar 

  • Hewaidy AA, Farouk S, Ayyad HM (2013) Foraminifera and sequence stratigraphy of Burdigalian-Serravallian succession on the eastern side of the Gulf of Suez, southwestern Sinai, Egypt. Neues Jahrbuch Für Geologie Und Paläontologie Abh 2(270):151–171

    Google Scholar 

  • Holland SM (1995) The stratigraphic distribution of fossils. Paleobiology 2:92–109

    Google Scholar 

  • Holland SM (2000) The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26:148–168

    Google Scholar 

  • Holland SM (2010) Additive diversity partitioning in palaeobiology: revisiting Sepkoski’s question. Palaeontology 53(6):1237–1254

    Google Scholar 

  • Holland SM (2012) Sea level change and the area of shallow-marine habitat: implications for marine biodiversity. Paleobiology 38:205–217

    Google Scholar 

  • Holland SM (2016) The non-uniformity of fossil preservation. Philosophical Transactions B 371:20150130. https://doi.org/10.1098/rstb.2015.0130

    Article  Google Scholar 

  • Holland SM, Miller AI, Meyer DL, Dattilo BF (2001) The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati. Ohio Region Palaios 16(3):205–217

    Google Scholar 

  • Hussein IM, Abd-Allah AMA (2001) Tectonic evolution of the northeastern part of the African continental margin, Egypt. J Afr Earth Sci 33(1):49–68

    Google Scholar 

  • Jablonski D (1980) Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6(4):397–407

    Google Scholar 

  • Kassab AS, Obaidalla NA (2001) Integrated biostratigraphy and inter–regional correlation of the Cenomanian-Turonian deposits of Wadi Feiran, Sinai, Egypt. Cretac Res 22:1–11

    Google Scholar 

  • Kershaw S (1994) Classification and geological significance of biostromes. Facies 31(1):89–91

    Google Scholar 

  • Kidwell SM (1986) Models for fossil concentrations: paleobiologic implications. Paleobiology 12:6–24

    Google Scholar 

  • Kidwell SM (1998) Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977–995

    Google Scholar 

  • Kiessling W (1996) Facies characterization of mid-Mesozoic deep water sediments by quantitative analysis of siliceous microfaunas. Facies 35:237–274

    Google Scholar 

  • Klein C, Korn D (2016) Quantitative analysis of the late Famennian and early Tournaisian ammonoid stratigraphy. Newsl Stratigr 49(1):1–26

    Google Scholar 

  • Lazo DG (2004) Bivalve taphonomy: testing the effect of life habits on the shell condition of the Littleneck Clam Protothaca (Protothaca) staminea (Mollusca: Bivalvia). Palaios 19:451–459

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. 2nd edn. Elsevier, Amsterdam

  • Longhitano SG, Mellere D, Steel RJ, Ainsworth RB (2012) Tidal depositional systems in the rock record: a review and new insights. Sed Geol 279:2–22

    Google Scholar 

  • Monnet C (2009) The Cenomanian-Turonian boundary mass extinction (late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the western Intrior (North America). Palaeogeogr Palaeoclimatol Palaeoecol 282:88–104

    Google Scholar 

  • Monnet C, Klug C, Goudemand N, De Baets K, Bucher H (2011) Quantitative biochronology of Devonian ammonoids from Morocco and proposals for a refined unitary association method. Lethaia 44:469–489

    Google Scholar 

  • Moustafa AR, Khalil MH (1995) Superposed deformation in the northern Suez rift, Egypt: relevance to hydrocarbon exploration. J Pet Geol 18:245–266

    Google Scholar 

  • Murray JW, Alve E (1999) Taphonomic experiments on marginal marine foraminiferal assemblages: how much ecological information is preserved? Palaeogeogr Palaeoclimatol Palaeoecol 149:183–197

    Google Scholar 

  • Nagm E (2019) The late Cenomanian maximum flooding Neolobites bioevent: a case study from the Cretaceous of northeast Egypt. Mar Pet Geol 102:740–750

    Google Scholar 

  • Nagm E, Farouk S, Ahmad F (2017) The Cenomanian-Turonian boundary in Jordan: ammonite biostratigraphy and faunal turnover. Geobios 50(1):37–47

    Google Scholar 

  • Nagm E, Jain S, Mahfouz K, El-Sabbagh A, Abu Shama A (2021) Biotic response to the latest Cenomanian drowning and OAE2: a case study from the Eastern Desert of Egypt. Proc Geol Assoc 132:70–92

    Google Scholar 

  • Newell RC (1979) Biology of intertidal animals. Marine Ecological Surveys Ltd., Faversham, p 781

    Google Scholar 

  • Pálfy J (2007) Applications of quantitative biostratigraphy in chronostratigraphy and time scale construction. Stratigraphy 4:195–199

    Google Scholar 

  • Pálfy J, Parrish RR, Vörös A (2003) Mid-Triassic integrated U-Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). J Geol Soc 160:271–328

    Google Scholar 

  • Palma RM, Lopez-Gomez J, Piethe RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province) Neuquen Basin, Argentina: facies and depositional sequences. Sed Geol 195:113–134

    Google Scholar 

  • Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Bijue Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M. (eds.) Atlas perieTethys palaeogeographical maps. CCGM/CGMW: 129–136

  • Prothero DR, Schwab F (1996) Sedimentary Geology. An Introduction to Sedimentary Rocks and Stratigraphy: 575. New York

  • Raup DM (1975) Taxonomic diversity estimation using rarefaction. Paleobiology 1:333–342

    Google Scholar 

  • Saber SG (2012) Depositional framework and sequence stratigraphy of the Cenomanian-Turonian rocks on the western side of the Gulf of Suez, Egypt. Cretac Res 37:300–318

    Google Scholar 

  • Salama Y, Grammer M, Saber S, EL-Shazly S, Abdel-Gawad G, (2018) Sequence Stratigraphy and Rudist Facies Development of the Upper Barremian-Lower Cenomanian Platform, Northern Sinai, Egypt. Acta Geol Sin 92(1):286–310

    Google Scholar 

  • Scarponi D, Kowalewski M (2004) Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk associations from Upper Quaternary sequences of the Po Plain, Italy. Geology 32:989–992

    Google Scholar 

  • Schulze F, Lewy Z, Kuss H, Gharaibeh AA (2003) Cenomanian–Turonian carbonate platform deposits in west central Jordan. Int J Earth Sci 92:641–660

    Google Scholar 

  • Seilacher A (1984) Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207–237

    Google Scholar 

  • Shinn EA (1983) Tidal flat environment. In: Scholle PA, Bebout DG, Moore CH (eds.) Carbonate Depositional Environments. American Association Petroleum Geologists Memoir: 173–210.

  • Smith AB, McGowan AJ (2007) The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765–774

    Google Scholar 

  • Smith AB, Gale AS, Monks NE (2001) Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27(2):241–253

    Google Scholar 

  • Smith AB, Monks NEA, Gale AS (2006) Echinoid distribution and sequence stratigraphy in the Cenomanian (Upper Cretaceous) of southern England. Proc Geol Assoc 117:207–217

    Google Scholar 

  • Thomas RG, Smith DG, Wood JM, Visser J, Calverley-Range EA, Koster EH (1987) Inclined heterolithic stratification—terminology, description, interpretation and significance. Sed Geol 53(1–2):123–179

    Google Scholar 

  • Tucker ME (2003) Sedimentary rocks in the field, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Velde B (2003) Green clay minerals. Treatise Geochem 7:407

    Google Scholar 

  • Waterhouse KH (1992) Quantitative palynofacies analysis of Jurassic climatic cycles. Ph. D. Thesis, University of Southampton

  • Weber ME, Fenner JM, Thies A, Cepek P (2001) Biological response to Milankovitch forcing during the Late Albian (Kirchrode I borehole, northwestern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 174(1–3):269–286

    Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568

    Google Scholar 

  • Wilmsen M (2008) An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: correlation, sedimentology and biofacies. Palaeogeogr Palaeoclimatol Palaeoecol 258:317–333

    Google Scholar 

  • Wilmsen M (2012) Origin and significance of Late Cretaceous bioevents: examples from the Cenomanian. Acta Palaeontol Pol 57:759–771

    Google Scholar 

  • Wilmsen M, Nagm E (2012) Depositional environments and facies development of the Cenomanian-Turonian Galala and Maghra el Hadida formations of the Southern Galala Plateau (Upper Cretaceous, Eastern Desert, Egypt). Facies 58:229–247

    Google Scholar 

  • Wilmsen M, Nagm E (2013) Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian-Turonian) of the Eastern Desert, Egypt. NOS 46:23–46

    Google Scholar 

  • Wright P, Cherns L, Hodges P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31(3):211–214

    Google Scholar 

  • Yuan G, Cao Y, Schulz HM, Hao F, Gluyas J, Liu K, Yang T, Wang Y, Xi K, Li F (2019) A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs. Earth Sci Rev 191:114–140

    Google Scholar 

  • Zuschin M, Stanton RJ (2002) Paleocommunity reconstruction from biostromes: a case study from the main Glauconite Bed, Eocene, Texas. Palaios 17:602–614

    Google Scholar 

  • Zuschin M, Harzhauser M, Mandic O (2005) Influence of size-sorting on diversity estimates from tempestitic biostromes in the Middle Miocene of Austria. Palaios 20:142–158

    Google Scholar 

  • Zuschin M, Harzhauser M, Mandic O (2011) Disentangling palaeodiversity signals from a biased sedimentary record: an example from the Early to Middle Miocene of Central Paratethys Sea. Geol Soc Lond Spl Publ 358(1):123–139

    Google Scholar 

Download references

Acknowledgements

Prof. Dr. Martin Zuschin (University of Vienna) is highly acknowledged for his valuable advice and useful suggestions on the stratigraphic paleobiology and for improving the language. The authors are very grateful to the two Steven Holland (University of Georgia) and an anonymous reviewer for their constructive suggestions that greatly improved the manuscript. Research Supporting Project number (RSP-2021/139), King Saud University, Riyadh, Saudi Arabia. Ahmed A. Abdelhady is funded by a full scholarship (2019/2020) from the Ministry of Higher Education of the Arab Republic of Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Awad Abdelhady.

Supplementary Information

Below is the link to the electronic supplementary material.

10347_2021_639_MOESM1_ESM.xlsx

Supplementary file1. Appendix S1 Species occurrence data of the Cenomanian–Turonian macrofauna in the studied sections (XLSX 32 KB)

10347_2021_639_MOESM2_ESM.xlsx

Supplementary file2. Appendix S2 Stratigraphic range of the study samples on the proposed UAs sequence of events. ‘?’ denotes undetermined range (XLSX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, S., Al-Kahtany, K. & Abdelhady, A.A. Cyclic nature of the biotic attributes of macroinvertebrate communities in the Cenomanian–Turonian strata of Sinai: water depth-driven biological responses. Facies 68, 1 (2022). https://doi.org/10.1007/s10347-021-00639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00639-8

Keywords

Navigation