Skip to main content
Log in

High-Sensitivity Troponin T Testing for Pediatric Patients in the Emergency Department

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Debate exists on the usefulness of high-sensitivity cardiac troponin (hs-cTn) testing in pediatric patients due to the perceived low incidence of myocardial injury and lack of data concerning its efficacy. We evaluated the contribution of an increased hs-cTnT above the 99th percentile upper-reference limit (URL) to clinical diagnoses made in pediatric patients presenting to the emergency department (ED). Retrospective cohort study including patients aged 0–18 years presenting to the ED from 2018 to 2020 where hs-cTnT was measured. Sex-specific 99th percentile URLs of 15 and 10 ng/L for males and females, respectively, were used, with concentrations above these thresholds considered indicative of myocardial injury. Overall, 356 patients were identified in whom hs-cTnT concentrations were measured during ED clinical evaluation. Hs-cTnT was increased above the 99th percentile on presentation in 36 patients (10.1%). Twelve patients (3.4%) had a clinical cardiac diagnosis made. Hs-cTnT was increased in 6 of these (50.0%). Serial hs-cTnT from 106 patients with an initial hs-cTnT < 99th percentile was subsequently elevated in 5 (4.6%); none of whom had a final clinical cardiac diagnosis. Hs-cTnT has high specificity, but low sensitivity when used as a screening tool for myocardial injury when the gold standard is mostly clinical assessment. In present practice, however, they do not appear to track well with clinical diagnoses. Further studies are needed to more clearly define the role of hs-cTnT in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data and materials within this manuscript are available upon request.

References

  1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Executive Group on behalf of the Joint European Society of Cardiology /American College of Cardiology /American Heart Association /World Heart Federation Task Force for the Universal Definition of Myocardial I (2018) Fourth universal definition of myocardial infarction. J Am Coll Cardiol 72(18):2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038

    Article  PubMed  Google Scholar 

  2. Sandoval Y, Jaffe AS (2017) Using high-sensitivity cardiac troponin T for acute cardiac care. Am J Med 130(12):1358–1365. https://doi.org/10.1016/j.amjmed.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  3. Sandoval Y, Smith SW, Sexter A, Thordsen SE, Bruen CA, Carlson MD, Dodd KW, Driver BE, Hu Y, Jacoby K, Johnson BK, Love SA, Moore JC, Schulz K, Scott NL, Apple FS (2017) Type 1 and 2 myocardial infarction and myocardial injury: clinical transition to high-sensitivity cardiac troponin I. Am J Med 130(12):1431–1439. https://doi.org/10.1016/j.amjmed.2017.05.049

    Article  CAS  PubMed  Google Scholar 

  4. Kadesjo E, Roos A, Siddiqui A, Desta L, Lundback M, Holzmann MJ (2019) Acute versus chronic myocardial injury and long-term outcomes. Heart 105(24):1905–1912. https://doi.org/10.1136/heartjnl-2019-315036

    Article  PubMed  Google Scholar 

  5. Lee KK, Noaman A, Vaswani A, Gibbins M, Griffiths M, Chapman AR, Strachan F, Anand A, McAllister DA, Newby DE, Gray AJ, Mills NL, Shah ASV (2019) Prevalence, determinants, and clinical associations of high-sensitivity cardiac troponin in patients attending emergency departments. Am J Med 132(1):110-118-110–121. https://doi.org/10.1016/j.amjmed.2018.10.002

    Article  CAS  Google Scholar 

  6. Mahle WT, Campbell RM, Favaloro-Sabatier J (2007) Myocardial infarction in adolescents. J Pediatr 151(2):150–154. https://doi.org/10.1016/j.jpeds.2007.02.045

    Article  PubMed  Google Scholar 

  7. Friedman KG, Kane DA, Rathod RH, Renaud A, Farias M, Geggel R, Fulton DR, Lock JE, Saleeb SF (2011) Management of pediatric chest pain using a standardized assessment and management plan. Pediatrics 128(2):239–245. https://doi.org/10.1542/peds.2011-0141

    Article  PubMed  Google Scholar 

  8. Danduran MJ, Earing MG, Sheridan DC, Ewalt LA, Frommelt PC (2008) Chest pain: characteristics of children/adolescents. Pediatr Cardiol 29(4):775–781. https://doi.org/10.1007/s00246-008-9200-9

    Article  PubMed  Google Scholar 

  9. Zavaras-Angelidou KA, Weinhouse E, Nelson DB (1992) Review of 180 episodes of chest pain in 134 children. Pediatr Emerg Care 8(4):189–193. https://doi.org/10.1097/00006565-199208000-00004

    Article  CAS  PubMed  Google Scholar 

  10. Brown JL, Hirsh DA, Mahle WT (2012) Use of troponin as a screen for chest pain in the pediatric emergency department. Pediatr Cardiol 33(2):337–342. https://doi.org/10.1007/s00246-011-0149-8

    Article  PubMed  Google Scholar 

  11. Harris TH, Gossett JG (2016) Diagnosis and diagnostic modalities in pediatric patients with elevated troponin. Pediatr Cardiol 37(8):1469–1474. https://doi.org/10.1007/s00246-016-1459-7

    Article  PubMed  Google Scholar 

  12. Liesemer K, Casper TC, Korgenski K, Menon SC (2012) Use and misuse of serum troponin assays in pediatric practice. Am J Cardiol 110(2):284–289. https://doi.org/10.1016/j.amjcard.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  13. Brancato F, De Rosa G, Gambacorta A, Nunziata A, Ferrara P, Buonsenso D, Covino M, Chiaretti A (2020) Role of troponin determination to diagnose chest pain in the pediatric emergency department. Pediatr Emerg Care. https://doi.org/10.1097/PEC.0000000000002123

    Article  PubMed  Google Scholar 

  14. Dionne A, Kheir JN, Sleeper LA, Esch JJ, Breitbart RE (2020) Value of troponin testing for detection of heart disease in previously healthy children. J Am Heart Assoc 9(4):e012897. https://doi.org/10.1161/JAHA.119.012897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanaan UB, Chiang VW (2004) Cardiac troponins in pediatrics. Pediatr Emerg Care 20(5):323–329. https://doi.org/10.1097/01.pec.0000125664.35690.51

    Article  PubMed  Google Scholar 

  16. Hirsch R, Landt Y, Porter S, Canter CE, Jaffe AS, Ladenson JH, Grant JW, Landt M (1997) Cardiac troponin I in pediatrics: normal values and potential use in the assessment of cardiac injury. J Pediatr 130(6):872–877. https://doi.org/10.1016/s0022-3476(97)70271-3

    Article  CAS  PubMed  Google Scholar 

  17. Gore MO, Seliger SL, Defilippi CR, Nambi V, Christenson RH, Hashim IA, Hoogeveen RC, Ayers CR, Sun W, McGuire DK, Ballantyne CM, de Lemos JA (2014) Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol 63(14):1441–1448. https://doi.org/10.1016/j.jacc.2013.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz MC, Wellen S, Rome JJ, Ravishankar C, Natarajan S (2013) Chest pain with elevated troponin assay in adolescents. Cardiol Young 23(3):353–360. https://doi.org/10.1017/S1047951112001278

    Article  PubMed  Google Scholar 

  19. Kayali S, Ertugrul I, Yoldas T, Kaya O, Ozgur S, Orun UA, Karademir S (2018) Sensitive cardiac troponins: could they be new biomarkers in pediatric pulmonary hypertension due to congenital heart disease? Pediatr Cardiol 39(4):718–725. https://doi.org/10.1007/s00246-018-1811-1

    Article  PubMed  Google Scholar 

  20. Snoek KG, Kraemer US, Ten Kate CA, Greenough A, van Heijst A, Capolupo I, Schaible T, van Rosmalen J, Wijnen RM, Reiss IK, Tibboel D (2016) High-sensitivity troponin T and N-terminal pro-brain natriuretic peptide in prediction of outcome in congenital diaphragmatic hernia: results from a multicenter. Random Control Trial J Pediatr 173(245–249):e244. https://doi.org/10.1016/j.jpeds.2016.03.026

    Article  CAS  Google Scholar 

  21. Asrani P, Aly AM, Jiwani AK, Niebuhr BR, Christenson RH, Jain SK (2018) High-sensitivity troponin T in preterm infants with a hemodynamically significant patent ductus arteriosus. J Perinatol 38(11):1483–1489. https://doi.org/10.1038/s41372-018-0192-x

    Article  CAS  PubMed  Google Scholar 

  22. Vasile VC, Jaffe AS (2017) High-sensitivity cardiac troponin for the diagnosis of patients with acute coronary syndromes. Curr Cardiol Rep 19(10):92. https://doi.org/10.1007/s11886-017-0904-4

    Article  PubMed  Google Scholar 

  23. Adams JE 3rd, Davila-Roman VG, Bessey PQ, Blake DP, Ladenson JH, Jaffe AS (1996) Improved detection of cardiac contusion with cardiac troponin I. Am Heart J 131(2):308–312. https://doi.org/10.1016/s0002-8703(96)90359-2

    Article  PubMed  Google Scholar 

  24. Oliveira NS, Silva VR, Castelo JS, Elias-Neto J, Pereira FE, Carvalho WB (2008) Serum level of cardiac troponin I in pediatric patients with sepsis or septic shock. Pediatr Crit Care Med 9(4):414–417. https://doi.org/10.1097/PCC.0b013e31817e2b33

    Article  PubMed  Google Scholar 

  25. Mair J, Lindahl B, Hammarsten O, Muller C, Giannitsis E, Huber K, Mockel M, Plebani M, Thygesen K, Jaffe AS (2018) How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care 7(6):553–560. https://doi.org/10.1177/2048872617748553

    Article  PubMed  Google Scholar 

  26. Thygesen K, Jaffe AS (2020) The gloomy long-term prognosis of patients with type 2 myocardial infarction or myocardial injury. J Am Coll Cardiol 75(9):1014–1016. https://doi.org/10.1016/j.jacc.2020.01.004

    Article  PubMed  Google Scholar 

  27. Neumann JT, Sorensen NA, Ojeda F, Schwemer T, Lehmacher J, Gonner S, Jarsetz N, Keller T, Schaefer S, Renne T, Landmesser U, Clemmensen P, Makarova N, Schnabel RB, Zeller T, Karakas M, Pickering JW, Than M, Parsonage W, Greenslade J, Cullen L, Westermann D, Blankenberg S (2017) Immediate rule-out of acute myocardial infarction using electrocardiogram and baseline high-sensitivity troponin I. Clin Chem 63(1):394–402. https://doi.org/10.1373/clinchem.2016.262659

    Article  CAS  PubMed  Google Scholar 

  28. Bohn MK, Higgins V, Kavsak P, Hoffman B, Adeli K (2019) High-sensitivity generation 5 cardiac troponin T sex- and age-specific 99th percentiles in the CALIPER cohort of healthy children and adolescents. Clin Chem 65(4):589–591. https://doi.org/10.1373/clinchem.2018.299156

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was obtained or needed for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan S. Jaffe.

Ethics declarations

Conflict of interest

Dr. Jaffe presently or in the past has consulted for most of the major diagnostic companies, including Roche Diagnostics who made the reagents for the assay used in this study. No conflicts of interest for the remaining authors.

Ethics Approval

This study is approved by Mayo Clinic Institutional Review Board.

Informed Consent

Written informed consent to participate in the study was not obtained for patients as this was a retrospective chart review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A.P., Homme, J.L., Qureshi, M.Y. et al. High-Sensitivity Troponin T Testing for Pediatric Patients in the Emergency Department. Pediatr Cardiol 43, 350–359 (2022). https://doi.org/10.1007/s00246-021-02726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-021-02726-7

Keywords

Navigation