Skip to main content
Log in

Mud Volcanic Fluids of the Kerch–Taman Region: Geochemical Reconstructions and Regional Trends. Communication 1: Geochemical Features and Genesis of Mud-Volcanic Waters

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The chemical and isotopic characteristics (δ18O and δ2H) of water from 42 mud volcanoes of the Kerch–Taman region (Crimean–Caucasus district) were analyzed. The formation temperatures of mud volcanic waters were estimated using the Mg-Li hydrochemical geothermometer (t(Mg-Li) = 40–134°C). It was revealed that dehydration waters released during the smectite–to-illite transformation play significant role in the total fluid balance of the mud volcanic systems (up to 80% of the total fluid volume). These waters are characterized by low Cl ion contents, δ18O from +13 to +17‰, and δ2H from –25 to –20‰ relative to VPDB, and high concentrations of \({\text{HCO}}_{3}^{ - }\), B, Li, Ba and other trace elements. Correlations between the concentration of HCO3, B, δ18O, and t(Mg-Li) values were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Hereinafter, the concentration coefficients of boron and other elements are calculated as the ratio of the element concentration to that of chlorine ion in sample normalized to the same ratio in oceanic water (КВ = (В/Cl)/(Вm/Clm)). The values of ion concentrations in seawater were taken from (Horne, 1969).

  2. Samples with the possible admixture of surface and ground waters were excluded from the data set while estimating the ranges and average values.

REFERENCES

  1. Aliev, Ad.A., Guliev, I.S., Dadashev, F.G., and Rakhmanov, R.R., Atlas gryazevykh vulkanov mira (Atlas of Mud Volcanoes in the World), Baku: Nafta-Press, 2015.

    Google Scholar 

  2. Chelnokov, G.A., Bragin, I.V., and Kharitonova, N.A., Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia), J. Hydrol. (Amst), 2018, vol. 559, pp. 942–953.

    Article  Google Scholar 

  3. Dählmann, A. and de Lange, G.J., Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160, Earth Planet. Sci. Lett., 2003, vol. 212, no. 3/4, pp. 377–391.

    Article  Google Scholar 

  4. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: smektity, smeshannosloinye obrazovaniya (Clay Minerals: Smectites and Mixed-Layer Minerals), Moscow: Nauka, 1990.

  5. Ershov, V.V. and Levin, B.V., New data on the material composition of mud volcano products on Kerch Peninsula, Dokl. Earth Sci., 2016, vol. 471, no. 1, pp. 1149–115.

    Article  Google Scholar 

  6. Gemp, S.D., Dubrova, N.V., Nesmelova, Z.N., et al., Carbon isotope composition of carbon-bearing gases (CH4 and CO2) in mud volcanoes of the Kerch–Taman zone, Geokhimiya, 1970, no. 2, pp. 243–247.

  7. Giggenbach, W.F., Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin, Earth Planet. Sci. Lett., 1992, vol. 113, no. 4, pp. 495–510.

    Article  Google Scholar 

  8. Giggenbach, W.F., Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand, J. Volcanol. Geotherm. Res., 1995, vol. 68, p. 89.

    Article  Google Scholar 

  9. Gubkin, I.M. and Fedorov, S.F., Gryazevye vulkany Sovetskogo Soyuza i ikh svyaz' s genezisom neftyanykh mestorozhdenii Krymsko-Kavkazskoi geologicheskoi provintsii (Mud Volcanoes in the Soviet Union: Application to the Genesis of Oil Fields in the Crimean–Caucasian Province), Moscow: AN SSSR, 1938

  10. Karandashev, V.K., Leikin, A.Yu., Khvostikov, V.A., Kutseva, N.K., and Pirogova, S.V., Water analysis by inductively coupled plasma mass spectrometry, Inorg. Mater., 2016, vol. 52, no. 14, pp. 1391–1404.

    Article  Google Scholar 

  11. Kharaka, Y.K. and Mariner, R.H., Chemical geothermomethers and their application to formation waters from sedimentary basins, in Thermal History of Sedimentary Basins, Methods and Case Histories, New York: Springer, 1989.

  12. Horne, R.A., Marine Chemistry, New York: Wiley-Intersciences, 1969. Translated under the title Morskaya khimiya, Moscow: Mir, 1972.

  13. Kikvadze, O.E., Lavrushin, V.Yu., Pokrovskii, B.G., and Polyak, B.G., Gases from mud volcanoes of western and central Caucasus, Geofluids, 2010, vol. 10, pp. 486–496.

    Article  Google Scholar 

  14. Kikvadze, O.E., Lavrushin, V.Yu., Pokrovskii, B.G., and Polyak, B.G., Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis, Lithol. Miner. Resour., 2014, no. 6, pp. 557–578.

  15. Kikvadze, O.E., Lavrushin, V.Yu., and Polyak, B.G., Chemical geothermometry: application to mud volcanic waters of the Caucasus region, Frontiers of Earth Sciences., 2020, no. 6, pp. 31–50.

  16. Kopf, A., Significance of mud volcanism, Rev. Geophys., 2002, vol. 40, pp. B-1–B-49.

    Article  Google Scholar 

  17. Kopf, A., Deyhle, A., Lavrushin, V.Yu., et al., Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone, Int. J. Earth. Sci. (Geol. Rundsch.), 2003, vol. 92, pp. 407–425.

    Google Scholar 

  18. Kovalevskii, S.A., Gryazevye vulkany Yuzhno-Kaspiiskogo regiona (Azerbaidzhan i Turkmeniya) (Mud Volcanoes in the South Caspian Region: Azerbaijan and Turkmenia), Baku: Aztoptekhizdat, 1940.

  19. Lavrushin, V.Yu., Podzemnye flyuidy Bol’shogo Kavkaza i ego obramleniya (Underground Fluids in the Greater Caucasus and Its Framing), Polyak, B.G., Ed., Moscow: GEOS, 2012.

    Google Scholar 

  20. Lavrushin, V.Yu., Polyak, B.G., Prasolov, E.M., and Kamenskii, I.L., Sources of material in mud volcano products (based on isotopic, hydrochemical, and geological data), Lithol. Miner. Resour., 1996, no. 6, pp. 557–578.

  21. Lavrushin, V.Yu., Kopf, A., Deyhle, A., and Stepanets, M.I., Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from boron isotopes, Lithol. Miner. Resour., 2003, no. 2, pp. 120–153.

  22. Lavrushin, V.Yu., Dubinina, E.O., and Avdeenko, A.S., Isotopic composition of oxygen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia), Lithol. Miner. Resour., 2005, no. 2, pp. 123–137.

  23. Lavrushin, V.Yu., Guliev, I.S., Kikvadze, O.E., Aliev, Ad.A., Polyak, B.G., and Pokrovsky, B.G., Waters from mud volcanoes of Azerbaijan: Isotopic–geochemical properties and generation environments, Lithol. Miner. Resour., 2015, no. 1, pp. 1–25.

  24. Maekawa, T., Experimental study on isotopic fractionation in water during gas hydrate formation, Geochem. J., 2004, vol. 38, pp. 129–138.

    Article  Google Scholar 

  25. Martinelli, G. and Dadomo, A., Geochemical model of mud volcanoes from reviewed worldwide data, in Mud Volcanoes, Geodynamics and Seismicity, Springer, 2005, vol. 52, pp. 211–220.

    Book  Google Scholar 

  26. Nakayama, N., Tsunogai, U., Ashi, J., and Gamo, T., Stable isotope anomalies and low chloride concentrations in pore water of CH4-rich sediments at the Tanegashima mud volcano, Japan, Am. Geophys. Union Fall Meet., 2004, Abstract #OS23B-1309.

  27. Nikitenko, O.A. and Ershov, V.V., Global formation of the isotopic composition (δ18O, δD) in mud volcanic waters, Vestnik KRAUNTs. Ser. Nauki Zemle, 2017, no. 2 (34), pp. 49–60.

  28. Polyak, B.G., Tolstikhin, I.N., Yakovlev, L.E., Marty, B., and Cheshko, A.L., Helium isotopes, tectonics and heat flow in the Northern Caucasus, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 11, pp. 1925–1944.

    Article  Google Scholar 

  29. Polyak, B.G., Lavrushin, V.Yu., Kikvadze, O.E., and Ioffe, A.I., Helium isotopes in underground fluids of the Caucasian region, Monit., Nauka Tekhn., 2012, no. 1, pp. 28–42.

  30. Popkov, V.I., Skladchato-nadvigovye dislokatsii (Fold–Overthrust Dislocations), Moscow: Nauchn. Mir, 2001.

  31. Popkov, V.I., Imbricate thrust structure of the Northwestern Caucasus, Dokl. Earth Sci, 2006, vol. 411, no. 2, pp. 1222–1224.

    Article  Google Scholar 

  32. Revil, A., Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism, Geophys. Rev. Lett., 2002, vol. 29, no. 12, pp. 81–84.

    Google Scholar 

  33. Reyes, A.G., Christenson, B.W., and Faure, K., Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand, J. Volcanol. Geotherm. Res., 2010, vol. 192, no. 3/4, pp. 117–141.

    Article  Google Scholar 

  34. Saintot, A. and Angelier, J., Plio-Quaternary paleostress regimes and relation to structural development in the Kertch-Taman peninsulas (Ukraine and Russia), J. Struct. Geol., 2000, vol. 22, pp. 1049–1064.

    Article  Google Scholar 

  35. Seletskii, Yu.B., Deuterium and oxygen-18: Implication for the formation of mud volcanic waters, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 5, pp. 133–138.

  36. Shnyukov, E.F., Sobolevskii, Yu.V., Gnatenko, G.I., Naumenko, P.I., and Kutnii, V.A., Gryazevye vulkany Kerchensko-Tamanskoi oblasti (atlas) (Mud Volcanoes in the Kerch–Taman Region: Atlas), Kiev: Naukova Dumka, 1986.

  37. Shnyukov, E.F., Sheremet’ev, V.M., Maslakov, N.A., Kutnii, V.A., Gusakov, I.N., and Trofimov, V.V., Gryazevye vulkany Kerchensko-Tamanskogo regiona (Mud Volcanoes in the Kerch–Taman Region), Krasnodar: GlavMedia, 2005.

  38. Sokol, E., Kokh, S., Kozmenko, O., et al., Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues (a case study from the Bulganak field, Northern Black Sea), Minerals, 2018, vol. 8, p. 344.

    Article  Google Scholar 

  39. Sokol, E.V., Kokh, S.N., Kozmenko, O.A., Lavrushin V.Yu., Belogub E.V., Khvorov P.V., Kikvadze O.E. Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone, Chem. Geol., 2019, vol. 525, pp. 58–81.

  40. Tugolesov, D.A., Gorshkov, A.S., Meisner, L.B., et al., Tektonika mezo-kainozoiskikh otlozhenii Chernomorskoi vpadiny (Tectonics of Meso-Cenozoic Rocks in the Black Sea Basin), Moscow: Nedra, 1985.

  41. Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.E., et al., Isotope signature of gases in mud volcanoes, Lithol. Miner. Resear., 1985, no. 1, pp. 72–87.

  42. Ved, I.P., Klimaticheskii Atlas Kryma (Climatic Atlas of the Crimea) Simferopol: Tavriya-Plyus, 2000.

  43. Yakubov, A.A., Grigor’yants, B.V., Aliev, A.D., et al., Gryazevoi vulkanizm Sovetskogo Soyuza i ego svyaz' s neftegazonosnost’yu (Mud Volcanism in the Soviet Union and Its Relation to Petroleum Potential), Baku: ELM, 1980.

  44. Zonenshain, L.P. and Le Pichon, X., Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins, Tectonophysics, 1986, vol. 123, pp. 181–211.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to B.G. Pokrovsky for numerous O and H isotope determinations of water samples.

Funding

This work was supported by the Russian Science Foundation (project no. 17-17-01056-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Lavrushin or E. V. Sokol.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrushin, V.Y., Aydarkozhina, A.S., Sokol, E.V. et al. Mud Volcanic Fluids of the Kerch–Taman Region: Geochemical Reconstructions and Regional Trends. Communication 1: Geochemical Features and Genesis of Mud-Volcanic Waters. Lithol Miner Resour 56, 461–486 (2021). https://doi.org/10.1134/S0024490221060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221060043

Keywords:

Navigation