Skip to main content
Log in

Determination of Key Beds from the Cap Rocks of Oil Reservoirs Using a Novel Method, Case Study: The Gachsaran Formation, Southwest Iran

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The use of key beds in the cap rocks of the oil reservoirs is crucial. Lack of awareness of these key beds will have serious risks and damages. The Gachsaran oil field is located 220 km southwest of Ahwaz-Iran. The former caprock consists of six key beds (A, B, C, D, E, and F). At the time of writing this paper these key beds are being used during excavations and drilling to determine the site of casing points. What has made utilizing these key beds during excavations difficult however, is use of diamond drill bits which results in the shattering of excavated samples. As such, it has become challenging to learn more about these key beds through studying petrographic thin sections in microscopy. These key beds were observed during the investigation at the drill sites. Later, the excavated samples were studied in the Energy-Dispersive X-ray Spectroscopy (EDS) machine, using a semi-quantitative method to analyze the elemental differences in those key beds. In addition to the identification of various lithological and diagenetic properties of the caprock, this study leads to the introduction of four new key beds based on geochemical properties. Some of the most important differences within the formation include those between the caprock anhydrite and the non-caprock anhydrite, namely the presence of potassium and titanium and the absence of chlorine and sodium in the caprock section. The four new key beds introduced from this study using elemental differences were named as key beds-1, 2, 3, and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Abuseda, H., Kassab, M.A., LaLa, A.M., and El Sayed, N.A., Integrated petrographical and petrophysical studies of some Eocene carbonate rocks, Southwest Sinai, Egypt, Egypt. J. Petrol., no. 24, pp. 213–230.

  2. Adembayo, A. R., Kandll, M. E., Okasha, T. M., and Sanni, M. L., Measurements of electrical resistivity, NMR pore size and distribution, and X-ray CT-scan for performance evaluation of CO2 injection in carbonate rocks: A pilot study, Int. J. Greenhouse Gas Control, 2017, no. 63, pp. 1–11.

  3. Aghanabati, A., Geology of Iran, Stratigraphy of Zagros, Iran: Geol. Surv. Iran, 2006.

    Google Scholar 

  4. Amel, H., Jafarian, A., Husinec, A., Koeshidayatullah, A., and Swennen, R., Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin, Mar. Petrol. Geol., 2015, vol. 67, pp. 57–71.

    Article  Google Scholar 

  5. Alavi, M., Tectonic of Zagros orogenic belt of Iran, new data and interpretation, Tectonophysics, 1004, vol. 229, pp. 211–238.

  6. Alavi, M., Regional stratigraphy of the Zagros Fold-Thrust belt of Iran and its proforeland evolution, Am. J. Sci., 2004, vol. 304, pp. 1–20.

    Article  Google Scholar 

  7. Alsharhan, A.S. and Kendall, C.G.St.C., Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues, Earth Sci. Rev., 2003, vol. 61, pp. 191–243.

    Article  Google Scholar 

  8. Alsharhan, A.S. and Whittle, G.L., Carbonate-evaporite sequences of the Late Jurassic, southern and southwestern Arabian Gulf, Am. Ass. Petrol. Geol. Bull., 1995, vol.75, no. 11, pp. 1608–1630.

    Google Scholar 

  9. Bahroudi, A. and Koyi, H.A., Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin, Mar. Petrol. Geol., 2004, pp. 1–16.

  10. Benison, K.C. and Goldstein., R.H., Permian paleoclimate data from fluid inclusions in halite, Chem. Geol., 1999, vol. 154, pp. 113–132.

    Article  Google Scholar 

  11. Berberian, M., Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics, 1995, no. 241, pp. 193–224.

  12. Beresi, M.S., Cabaleri, N.G., Loser, H., and Armella, C., Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina, Facies, 2016, vol. 63, pp. 1–22.

    Google Scholar 

  13. Beydoun, Z.R., Hughes, C.M.W., and Stoneley, R., Petroleum in the Zagros basin: A Late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Palaeozoic–Mesozoic passive margine shelf, Am. Ass. Petrol. Geol., 1992.

  14. Biver-Arnal, T., Ferrandez-Canadell, C., Aguirre, J., Esteban. S., Fernandez, M., and Salas, R., Late Chattian platform carbonates with benthic foraminifera and coralline algae from the SE Iberian plate, Palaios, 2017, no. 32, pp. 61–82.

  15. Bhattacharyya, A. and Chakraborty, C., Analysis of Sedimentary Successions, Balkema Publ., 2000.

    Google Scholar 

  16. Brandano, M., Cornacchia, I., Raffi, I., and Tomassetti, L., The Oligocene—Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy), Sediment. Geol., 2016, no. 333, pp. 1–14.

  17. Choquette, P.W.,and Pray, L.C., Geologic nomenclature and classification of porosity in sedimentary carbonates, Am. Ass. Petrol. Geol. Bull., 1970, vol. 54, pp. 207–250.

    Google Scholar 

  18. Ciner, A., Kosun, E, and Deynoux, M., Fluvial, evaporitic and shallow-marine facies architecture, depositional evolution and cyclicity in the Sivas Basin (Lower to Middle Miocene), Central Turkey, J. Asian Earth Sci., 2002, vol. 21, pp. 147–165.

  19. Cooke, M.E., Simo, J.A., Underwood, C.A., and Rijken, P., Mechenical stratigraphic controls on fracture patterns with in carbonates and and implications for ground water flow, Sediment. Geol., 2006, vol. 184, pp. 225–239.

    Article  Google Scholar 

  20. Daraei, M., Amini, A., and Ansari, M., Facies analysis and depositional environment study of the mixed carbonate and evaporite Asmari Formation (Oligo-Miocene) in the sequence stratigraphic framework, NW Zagros, Iran, in Carbonates and Evaporites, 2015, no. 30, pp. 253–272.

  21. Dill, H.G., Berner, Z., Stuben, D., Nasir, S., and Al-Saad, H., Sedimentary, facies, mineralogy, and geochemistry of the sulphate bearing Miocene Dam Formationin Qatar, Sediment. Geol., 2005, vol. 174, p. 63–96.

    Article  Google Scholar 

  22. Dinh, C., Van, T., Quang, H., Van, C., Quoc, T., and Van, X., Applying seismic stratigraphy analysis for assessing upper Oligocene stratigraphic traps in Southeastern Cuu Long Basin, Sci. Technol. Devel. J., 2017, vol. 20, no. K4.

  23. Dunham, R.J., Classification of carbonate rocks according to depositional texture, in Ham, W. E., ed., Classification of Carbonate Rocks, Am. Ass. Petrol. Geol. Mem.1, 1962, pp. 108–121.

    Google Scholar 

  24. Einsele, G., Sedimentary Basin, Evolution, Facies, and Sediment Budget, Berlin: Springer, 2000.

    Google Scholar 

  25. El Khoriby, E.M., 2005. Origin of the gypsum-rich silicia nodules, Moghra Formation, North west Qattara depression, Western Desert, Egypt, Sediment. Geol., 2005, vol.177, pp. 41–55.

  26. Fu, Q., Qing, H., and Bergman, K., Early dolomitization and recrystallization of carbonate in an evaporate basin: The Middle Devonian Ranter laminate in southern Sackatchewan, Canada, J. Geol. Soc. London, 2006, vol.163, pp. 937–948.

    Article  Google Scholar 

  27. Feng-Hu, L., Sedimentology and dolomitization in the Upper Mississipian Turner Valley Carbonates, Quirk Creek, Alberta, Canada, M.Sc. Thesis, University of Windsor (Canada), 1993, 139 p.

  28. Gao, G. and Land, L.S., Early Ordovician Cool Creek Dolomite, middle Arbuckle group, Slick Hills, SW Oklahama, USA, origin and modification, J. Sediment. Petrol., 1991, vol. 61, pp. 1979–1990.

    Google Scholar 

  29. Ghanadian, M., Faghih, A., Abdollahie, Fard.I., Kusky, T., and Maleki, M., On the role of incompetent strata in the structural evolution of the Zagros fold-thrust belt, Dezful Embayment, Iran, Mar Petrol Geol., 2017, vol. 8, p. 320–333.

  30. Gholizade. Gh., Solimani, B., and Mohamadi, Y., 4th Symp. Geol. Soc. Birjand Univ., Iran, 2006.

  31. Gill, W.D. and Ala, M.A., Sedimentology of Gachsaran Formation (Lower Fars Series), Southwest Iran, Am. Ass. Petrol. Geol. Bull., 1972, vol. 56, pp. 1965–1974.

    Google Scholar 

  32. Gregg, J.M. and Shelton, K.L., Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formation Cambrian, Southeastern Missouri, J. Sediment. Petrol., 1990, vol. 60, pp. 549–562.

    Google Scholar 

  33. Gundügana, I., Onalb, M., and Depc, T., Sedimentology and petrography and diagenesis of Eocene-Oligocene evaporates: The Tuzhisar Formation, SW Sivas Basin, Turkey, J. Asian Earth Sci., 2005, vol. 25, pp. 791– 803.

    Article  Google Scholar 

  34. Hemmati Nourani, M., Taheri Moghadder, M. and Safari, M., 2017. Classification and assessment of rock mass parameters in Choghart iron mine using P wave velocity, J. Rock Mech. Geotechn. Engin., 2017, vol. 9, no. 2, pp. 318–328.

    Article  Google Scholar 

  35. Holail, H., Coordinated petrography-isotopic-chemical investigation of meteoric calcite cement (Jurassic-Pleistocene), Egypt, in Carbonate and Evaporates, 1992, vol. 7, no. 1, pp. 48–55.

  36. Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M., and Monibi, S., Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture, GeoArabia, 2006, vol. 11, no. 2, pp. 75–176.

    Article  Google Scholar 

  37. James, N.P., Diagenesis of Carbonate Sediments, A Short Course, Geo.Soc. Australia: Sedimentol. Spec. Group, 1991.

    Google Scholar 

  38. Janjuhah, H.T., Alansari, A., and Santha, P.R., Interrelationship between facies association, diagenetic alteration and reservoir properties evolution in the Middle Miocene carbonate build up, Central Luconia, offshore Sarawak, Malaysia, Arab. J. Sci. Engin., 2018, pp. 1–16.

    Google Scholar 

  39. Kasprzyk, A., Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporate basin of Carpathian Foredeep, Southern Poland, Sediment. Geol., 2003, vol. 154, pp. 167–194.

    Article  Google Scholar 

  40. Kendall, A.C. and Harwood, G.M., Marine evaporate, arid shorelines and basins, in Sedimentary Environments, Facies and Stratigraphy, Reading, H.G., Ed., Oxford: Blackwell Sci. Publ., 1996, pp. 281–324.

    Google Scholar 

  41. Lucia, F.J., Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space, J. Petrol. Techn., 1983, vol. 35, pp. 629–637.

    Article  Google Scholar 

  42. Lucia, F.J., Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization, Am. Ass. Petrol. Geol. Bull., 1995, vol. 79.

    Google Scholar 

  43. Mial, A.D., The Geology of Stratigraphy Sequence, Berlin: Speringer, 1997.

    Book  Google Scholar 

  44. Mohammadi, E., Hasanzadeh-Dastgerdi, M., Safari, A., and Vazirimoghaddam, H., Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran, in Carbonates and Evaporites, 2018, pp. 1–14.

  45. Moradi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., and Ghabeishavi, A., Rock typing using Geological and Petrophysical data in the Asmari reservoir, Aghajari Oilfield, SW Iran, J. Petrol. Sci. Engin., 2017, no. 152, pp. 523–537.

  46. Moradi, M., Moussavi-Harami, R., Mahboubi, A., Khanehbad, M., Ghabeishavi, A., Diagenesis and its effect on the reservoir quality of the Asmari Formation, Aghajari Oilfield, SW Iran, J. Geosci., 2018 (in press).

  47. Moradian, F., Baghbani, D., and Allameh, M., Microbiostratigrapy of the Paleocene-Lower Eocene Sequences in the Bibi Hakimeh 2 Subsurface Section Located in the SW of Iran, Open J. Geol., 2017, no. 7, pp 147–167.

  48. Motiei, H., Petroleum Geology, Zagros: Geol. Surv. Iran, 1994.

  49. Motiei, H., Cap Rock, Report No.P (National Iranian South Oil Company 3932), 1994.

  50. Naeimavi, M., Khazali F, Abdideh. M, Saadati, Z., Experimental study of the contamination effects of Gachsaran Formation fluid on the heavy-weight drilling fluid, The Open Petrol. Engin. J., 2018, vol. 11, pp. 107–117.

    Article  Google Scholar 

  51. Neumann, N.T., Rausch, T., Leipe, O., and Dellwig, Z., and Berner and Bottcher, M., E., Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 14, pp. 3619–3630.

    Article  Google Scholar 

  52. Orti, F. and Rosell, L., Evaporative systems and diagenetic patterns in the Calatayud basin (Miocene central Spain), Sedimentology, 2000, vol. 47, pp. 665–685.

    Article  Google Scholar 

  53. Pan, Y., Liao, Y., and Sun, Y., The characteristics of bound biomarkers released from asphaltenes in a sequence of naturally biodegraded oils, Org. Geochem., 2017, no. 111, pp. 56–66.

  54. Pomar, L., Esteban, M., Martinez, W., Eepino, D., Deott, V.C., Benkovics, L. and Leyva, T.C., Oligocene–Miocene carbonates of the Perla Field, Offshore Venezuela: Depositional model and facies architecture, In Bartolini, C., and Mann, P., (Eds.) Petroleum geology and potential of the Colombian Caribbean margin: AAPG Mermior, The American Association of Petroleum Geologist, 2015, 647–674.

  55. Pomar, L., Baceta, J.I., Hallock, P., Mateu-Vicens, G., and Basso, D., Reef building and carbonate production modes in the west-central Tethys during the Cenozoic, Mar. Petrol. Geol., 2017, no. 83, pp. 261–304.

  56. Pourmorad, S., Investigation of cap rock of Asmari reservoir in eastern Gachsaran oilfield using scanning electron microscope (SEM), Master’s thesis, 2008.

  57. Pourmorad, S., Wellsite Geology by Log Plot Software, Iran: Daneshyaran Publ., 2017.

    Google Scholar 

  58. Rao, C.P., Geochemical differences between tropical (Ordovician) and subpolar (Permian) carbonates, Tasmania, Australia, Geology, 1981, vol. 9, pp. 205–209.

    Article  Google Scholar 

  59. Rao, C.P., Modern Carbonates, Tropical, Temperate, Polar, in Introduction to Sedimentology and Geochemistry, 1996.

  60. Rao, C.P. and Adabi, M.H., Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia, Mar. Geol., 1992, vol. 103, pp. 249–272.

    Article  Google Scholar 

  61. Rezaee, M.R., Petroleum Geology, Iran: Alavi Publ., 2000.

    Google Scholar 

  62. Sadooni, F.N., Diagenetic features of some subsurface Teritary-Cretaceous evaporates from northen Iraq, in Carbonates and Evaporites, 1995, vol. 10, pp. 45–53.

    Article  Google Scholar 

  63. Saler, A.H. and Henderson, N., Distribution of porosity and permeability in platform dolomites-insight from the Permian of Texas, Am. Ass. Petrol. Geol. Bull., 1998, vol. 82, pp. 1528–1550.

    Google Scholar 

  64. Santos, D., Filho, E.B., Douardo, R.S., Amaral, M., Filipakis, S., Oliviera, L.M., Guimaraes, R.C., Santo, A.F., Borges, G.R., Franceschi, E., and Dariva, C., Study of asphaltene precipitation in crude oils at desalter conditions by near-infrared spectroscopy, Energy Fuels, 2017, vol. 31, no. 5, pp. 5031–5036.

    Article  Google Scholar 

  65. Sepher, M. and Cosrove, G.W., Structural framework of the Zagros fold–thrust belt, Iran, Mar. Petrol. Geol., 2004, vol. 21, p. 829.

    Article  Google Scholar 

  66. Slinger, F.C.P., The Agha jari cap rock, Iran Comp. Oil, Rep. no. 751, 1949.

  67. Soleimani, B. and Zarvani, A.S., Conf. Min. Mat. Petrol. Engin., 2007, ICFT, Phuket, pp. 37–41.

  68. Soleimani, B., Amiri, K., Samani, B., Shaban, L., Lithology effects on the fractures parameters using image log and petrophysical data, Russ. J. Earth Sci., 2016, vol. 16, pp. 1–11.

    Article  Google Scholar 

  69. Teklu, T. W., Zhou, Z., LI, X., and Abass, H., Experimental investigation on permeability and porosity hysteresis in low-permeability formations, in SPE Low Perm Symposium: Soc. Petrol. Engin., 2016.

  70. Teklu, T. W., Zhou, Z., Li, X., and Abass, H., Cyclic permeability and porosity hysteresis in mudrocks—Experimental study, Am. Rock Mech. Ass., 2016.

    Google Scholar 

  71. Testa, G. and Lugli, S., Gypsum anhydrite transformation in messinion evaporates of central Tuscany (Italy), Sediment. Geol., 2000, vol. 130, pp. 249–268.

    Article  Google Scholar 

  72. Tucker, M.E. and Wright, V.P., Carbonate Sedimentology, Oxford: Blackwell, 1990.

    Book  Google Scholar 

  73. Vatandoust, M. and Saein, A.F., Prediction of open fractures in the Asmari Formation using geometrical analysis: Aghajari Anticline, Dezful Embayment, SW Iran, J. Petrol. Geol., 2017, no. 40, pp. 413–426.

  74. Warren, J.K., Evaporites: Their Evolution and Economics, Oxford: Blackwell Sci., 1999.

    Google Scholar 

  75. Zervani, A.S, Solimani, B., and Amirie, B.H., 4th Symposium of the Geological Society of Birjand University, Iran.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Pourmorad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmorad, S., Jokar, A. & Jahan, S. Determination of Key Beds from the Cap Rocks of Oil Reservoirs Using a Novel Method, Case Study: The Gachsaran Formation, Southwest Iran. Lithol Miner Resour 56, 559–578 (2021). https://doi.org/10.1134/S0024490221060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221060055

Keywords:

Navigation