Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural vulnerability and hurricane-related media are associated with post-traumatic stress in youth

Abstract

The human toll of disasters extends beyond death, injury and loss. Post-traumatic stress (PTS) can be common among directly exposed individuals, and children are particularly vulnerable. Even children far removed from harm’s way report PTS, and media-based exposure may partially account for this phenomenon. In this study, we examine this issue using data from nearly 400 9- to 11-year-old children collected before and after Hurricane Irma, evaluating whether pre-existing neural patterns moderate associations between hurricane experiences and later PTS. The ‘dose’ of both self-reported objective exposure and media exposure predicted PTS, the latter even among children far from the hurricane. Furthermore, neural responses in brain regions associated with anxiety and stress conferred particular vulnerability. For example, heightened amygdala reactivity to fearful stimuli moderated the association between self-reported media exposure and PTS. Collectively, these findings show that for some youth with measurable vulnerability, consuming extensive disaster-related media may offer an alternative pathway to disaster exposure that transcends geography and objective risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Irma exposure predicts post-Irma PTS symptoms among hurricane-exposed youth.
Fig. 2: Pre-storm media exposure predicts PTS symptoms among children near and far.
Fig. 3: Activation in the EN-Back in cortical and subcortical ROIs.
Fig. 4: Prospective right amygdala reactivity moderates the relation between self-reported media exposure and PTS.
Fig. 5: Prospective OFC and parahippocampal reactivity moderates the relation between self-reported media exposure and PTS.

Similar content being viewed by others

Data availability

The ABCD data repository grows and changes over time. The ABCD data used in this report, including the substudy data collected outside of the baseline visits, came from RDS Fix Release 2.0.1 (https://doi.org/10.15154/1504431) and from the minimally processed imaging data available through abcd-sync. The data are available by request from the NIMH Data Archive (https://data-archive.nimh.nih.gov/abcd).

Code availability

All software used in the present analysis is open source. The R code (CRAN; v.3.6.0) to replicate the analysis is available at https://github.com/anthonystevendick/irmasubstudy_abcd.

References

  1. World Disasters Report 2018: Leaving No One Behind (International Federation of Red Cross and Red Crescent Societies, 2018).

  2. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  3. Kessler, R. C. et al. Trends in mental illness and suicidality after Hurricane Katrina. Mol. Psychiatry 13, 374–384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. North, C. S. & Pfefferbaum, B. Mental health response to community disasters: a systematic review. JAMA 310, 507–518 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Orengo-Aguayo, R., Stewart, R. W., de Arellano, M. A., Suarez-Kindy, J. L. & Young, J. Disaster exposure and mental health among Puerto Rican youths after Hurricane Maria. JAMA Netw. Open 2, e192619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Furr, J. M., Comer, J. S., Edmunds, J. M. & Kendall, P. C. Disasters and youth: a meta-analytic examination of posttraumatic stress. J. Consult. Clin. Psychol. 78, 765–780 (2010).

    Article  PubMed  Google Scholar 

  7. Goldmann, E. & Galea, S. Mental health consequences of disasters. Annu. Rev. Public Health 35, 169–183 (2014).

    Article  PubMed  Google Scholar 

  8. Pfefferbaum, B. et al. Posttraumatic stress two years after the Oklahoma City bombing in youths geographically distant from the explosion. Psychiatry 63, 358–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Schuster, M. A. et al. A national survey of stress reactions after the September 11, 2001, terrorist attacks. N. Engl. J. Med. 345, 1507–1512 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Suvak, M., Maguen, S., Litz, B. T., Silver, R. C. & Holman, E. A. Indirect exposure to the September 11 terrorist attacks: does symptom structure resemble PTSD? J. Trauma. Stress 21, 30–39 (2008).

    Article  PubMed  Google Scholar 

  11. Comer, J. S. et al. Adjustment among area youth after the Boston Marathon bombing and subsequent manhunt. Pediatrics 134, 7–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Holman, E. A., Garfin, D. R. & Silver, R. C. Media’s role in broadcasting acute stress following the Boston Marathon bombings. Proc. Natl Acad. Sci. USA 111, 93–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Thompson, R. R., Jones, N. M., Holman, E. A. & Silver, R. C. Media exposure to mass violence events can fuel a cycle of distress. Sci. Adv. 5, eaav3502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vasterman, P., Yzermans, C. J. & Dirkzwager, A. J. The role of the media and media hypes in the aftermath of disasters. Epidemiol. Rev. 27, 107–114 (2005).

    Article  PubMed  Google Scholar 

  15. Thompson, R. R., Holman, E. A. & Silver, R. C. Media coverage, forecasted posttraumatic stress symptoms, and psychological responses before and after an approaching hurricane. JAMA Netw. Open 2, e186228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong, S. D., Pel, A. J., Shaheen, S. A. & Chorus, C. G. Fleeing from Hurricane Irma: empirical analysis of evacuation behavior using discrete choice theory. Transp. Res. 79, 102227 (2020).

    Google Scholar 

  17. Comer, J. S. & Kendall, P. C. Terrorism: the psychological impact on youth. Clin. Psychol. 14, 179–212 (2007).

    Google Scholar 

  18. Comer, J. S., D’eSerisy, M. & Green, J. G. Caregiver-reports of Internet exposure and posttraumatic stress among Boston-area youth following the 2013 marathon bombing. Evid. Based Pract. Child Adolesc. Ment. Health 1, 86–102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Busso, D. S., McLaughlin, K. A. & Sheridan, M. A. Media exposure and sympathetic nervous system reactivity predict PTSD symptoms after the Boston Marathon bombings. Depress. Anxiety 31, 551–558 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robinson, O. J., Pike, A. C., Cornwell, B. & Grillon, C. The translational neural circuitry of anxiety. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2019-321400 (2019).

  21. LeDoux, J. E. & Pine, D. S. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry 173, 1083–1093 (2016).

    Article  PubMed  Google Scholar 

  22. Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169–191 (2010).

    Article  PubMed  Google Scholar 

  23. Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) Study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Swartz, J. R., Knodt, A. R., Radtke, S. R. & Hariri, A. R. A neural biomarker of psychological vulnerability to future life stress. Neuron 85, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hiser, J. & Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 83, 638–647 (2018).

    Article  PubMed  Google Scholar 

  27. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1478 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thome, J., Terpou, B. A., McKinnon, M. C. & Lanius, R. A. The neural correlates of trauma-related autobiographical memory in posttraumatic stress disorder: a meta-analysis. Depress. Anxiety 37, 321–345 (2020).

    Article  PubMed  Google Scholar 

  29. Stevens, J. S. et al. Disrupted amygdala–prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J. Psychiatr. Res. 47, 1469–1478 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mattson, W. I., Hyde, L. W., Shaw, D. S., Forbes, E. E. & Monk, C. S. Clinical neuroprediction: amygdala reactivity predicts depressive symptoms 2 years later. Soc. Cogn. Affect. Neurosci. 11, 892–898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bryant, R. A. et al. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum. Brain Mapp. 29, 517–523 (2008).

    Article  PubMed  Google Scholar 

  32. Killgore, W. D. et al. Cortico-limbic responses to masked affective faces across PTSD, panic disorder, and specific phobia. Depress. Anxiety 31, 150–159 (2014).

    Article  PubMed  Google Scholar 

  33. Bijanki, K. R. et al. Case series: unilateral amygdala ablation ameliorates post-traumatic stress disorder symptoms and biomarkers. Neurosurgery https://doi.org/10.1093/neuros/nyaa051 (2020).

  34. McLaughlin, K. A. et al. Amygdala response to negative stimuli predicts PTSD symptom onset following a terrorist attack. Depress. Anxiety 31, 834–842 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stevens, J. S. et al. Amygdala reactivity and anterior cingulate habituation predict posttraumatic stress disorder symptom maintenance after acute civilian trauma. Biol. Psychiatry 81, 1023–1029 (2017).

    Article  PubMed  Google Scholar 

  36. Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jovanovic, T. et al. Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample. Cortex 49, 1884–1891 (2013).

    Article  PubMed  Google Scholar 

  38. Shin, L. M. et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry 62, 273–281 (2005).

    Article  PubMed  Google Scholar 

  39. Sripada, R. K. et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci. 37, 241–249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koenigs, M. & Grafman, J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist 15, 540–548 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Admon, R., Milad, M. R. & Hendler, T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn. Sci. 17, 337–347 (2013).

    Article  PubMed  Google Scholar 

  42. Sakamoto, H. et al. Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: a functional MRI study. Neuroimage 26, 813–821 (2005).

    Article  PubMed  Google Scholar 

  43. Shin, L. M. et al. Hippocampal function in posttraumatic stress disorder. Hippocampus 14, 292–300 (2004).

    Article  PubMed  Google Scholar 

  44. Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maroun, M. Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala. Eur. J. Neurosci. 24, 2917–2922 (2006).

    Article  PubMed  Google Scholar 

  46. Kessel, E. M. et al. Hurricane Sandy exposure alters the development of neural reactivity to negative stimuli in children. Child Dev. 89, 339–348 (2018).

    Article  PubMed  Google Scholar 

  47. Kujawa, A. et al. Neural reactivity to emotional stimuli prospectively predicts the impact of a natural disaster on psychiatric symptoms in children. Biol. Psychiatry 80, 381–389 (2016).

    Article  PubMed  Google Scholar 

  48. Swartz, J. R., Williamson, D. E. & Hariri, A. R. Developmental change in amygdala reactivity during adolescence: effects of family history of depression and stressful life events. Am. J. Psychiatry 172, 276–283 (2015).

    Article  PubMed  Google Scholar 

  49. Parry, D. A. et al. A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01117-5 (2021).

  50. Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

    Article  Google Scholar 

  51. Dick, A. S. et al. Meaningful associations in the adolescent brain cognitive development study. NeuroImage 239, 118262 (2021).

    Article  PubMed  Google Scholar 

  52. Abelson, R. P. A variance explanation paradox: when a little is a lot. Psychol. Bull. 97, 129–133 (1985).

    Article  Google Scholar 

  53. Kavanagh, J. et al. News in a Digital Age: Comparing the Presentation of News Information over Time and Across Media Platforms (RAND Corporation, 2019).

  54. Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2018.04.004 (2018).

  55. Barch, D. M. et al. Demographic, physical and mental health assessments in the Adolescent Brain and Cognitive Development Study: rationale and description. Dev. Cogn. Neurosci. https://doi.org/10.1016/j.dcn.2017.10.010 (2017).

  56. R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021).

  57. Lai, B. S., Lewis, R., Livings, M. S., La Greca, A. M. & Esnard, A. M. Posttraumatic stress symptom trajectories among children after disaster exposure: a review. J. Trauma. Stress 30, 571–582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Green, B. L. & Lindy, J. D. Post-traumatic stress disorder in victims of disasters. Psychiatr. Clin. North Am. 17, 301–309 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Achenbach, T. M. & Rescorla, L. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-informant Assessment (ASEBA, 2001).

  60. Delahanty, D. L. & Nugent, N. R. Predicting PTSD prospectively based on prior trauma history and immediate biological responses. Ann. N. Y. Acad. Sci. 1071, 27–40 (2006).

    Article  PubMed  Google Scholar 

  61. Bonanno, G. A., Brewin, C. R., Kaniasty, K. & Greca, A. M. Weighing the costs of disaster: consequences, risks, and resilience in individuals, families, and communities. Psychol. Sci. Public Interest 11, 1–49 (2010).

    Article  PubMed  Google Scholar 

  62. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013).

    Article  PubMed  Google Scholar 

  63. Hare, T. A. et al. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go–nogo task. Biol. Psychiatry 63, 927–934 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tottenham, N. et al. The NimStim Set of Facial Expressions: judgments from untrained research participants. Psychiatry Res. 168, 242–249 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Conley, M. I. et al. The racially diverse affective expression (RADIATE) face stimulus set. Psychiatry Res. 270, 1059–1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Dosenbach, N. U. F. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. Neuroimage 161, 80–93 (2017).

    Article  PubMed  Google Scholar 

  68. Robinson, O. J. et al. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal–amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiatry 1, 294–302 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heller, A. S. in Post-traumatic Stress Disorder (eds Nemeroff, C. B. & Marmar, C.) 315–330 (Oxford Univ. Press, 2018).

  70. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).

    Article  PubMed  Google Scholar 

  71. Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C. & Taylor, P. A. fMRI clustering in AFNI: false-positive rates redux. Brain Connect. 7, 152–171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. La Greca, A. M., Silverman, W. K., Lai, B. & Jaccard, J. Hurricane-related exposure experiences and stressors, other life events, and social support: concurrent and prospective impact on children’s persistent posttraumatic stress symptoms. J. Consult. Clin. Psychol. 78, 794–805 (2010).

    Article  PubMed  Google Scholar 

  73. Vernberg, E. M., Silverman, W. K., La Greca, A. M. & Prinstein, M. J. Prediction of posttraumatic stress symptoms in children after Hurricane Andrew. J. Abnorm. Psychol. 105, 237–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Carpenter, A. L. et al. Event-related household discussions following the Boston Marathon bombing and associated posttraumatic stress among area youth. J. Clin. Child Adolesc. Psychol. 46, 331–342 (2017).

    Article  PubMed  Google Scholar 

  75. La Greca, A. M. et al. Before the storm: stressors associated with the Hurricane Irma evacuation process for families. Disaster Med. Public Health Prep. 13, 63–73 (2019).

    Article  PubMed  Google Scholar 

  76. Steinberg, A. M., Brymer, M. J., Decker, K. B. & Pynoos, R. S. The University of California at Los Angeles Post-traumatic Stress Disorder Reaction Index. Curr. Psychiatry Rep. 6, 96–100 (2004).

    Article  PubMed  Google Scholar 

  77. Steinberg, A. M. et al. Psychometric properties of the UCLA PTSD Reaction Index: part I. J. Trauma. Stress 26, 1–9 (2013).

    Article  PubMed  Google Scholar 

  78. Elhai, J. D. et al. Psychometric properties of the UCLA PTSD Reaction Index. Part II: investigating factor structure findings in a national clinic-referred youth sample. J. Trauma. Stress 26, 10–18 (2013).

    Article  PubMed  Google Scholar 

  79. Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing 3rd edn (Academic Press, 2012).

  80. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  81. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Erlbaum, 1988).

Download references

Acknowledgements

We thank the families and children who participated and continue to participate in the ABCD Study, as well as staff at the study sites, Data Analysis and Informatics Core, and site personnel involved in data collection and curating the data release. The data used in the preparation of this article were obtained from the ABCD Study (https://abcdstudy.org), held in the NIMH Data Archive. This is a multisite, longitudinal study designed to recruit more than 10,000 children ages 9–10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147 and National Science Foundation RAPID award number 1805645 to A.S.D. and J.S.C. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A list of participating sites and a complete list of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the National Institutes of Health or ABCD consortium investigators. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception of the study and/or the collection and curation of the data. A.S.D. and W.K.T. analysed the data. A.S.D. and J.S.C. wrote the draft manuscript. K.S., R.G., M.T.S., A.R.L., W.K.T., S.F.T., L.M.S., K.M.G., S.J.N., L.B.C., A.M.L.G. and R.H.G. reviewed and commented on the draft for the final write-up of the study. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Anthony Steven Dick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Jennifer Stevens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dick, A.S., Silva, K., Gonzalez, R. et al. Neural vulnerability and hurricane-related media are associated with post-traumatic stress in youth. Nat Hum Behav 5, 1578–1589 (2021). https://doi.org/10.1038/s41562-021-01216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01216-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing