Skip to main content
Log in

A Review on Friction and Lubrication in Automotive Metal Forming: Experiment and Modeling

  • Invited Review
  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Metal forming or shaping processes, such as sheet metal forming and bulk forming, are widely used in many industries including automotive industry. Before computational simulations were widely used in the field of metal forming industry, the trial-and-error based empirical approach was conventionally applied to the optimization of the metal forming process and product. The most commonly employed numerical approach in the metal forming process for robust process optimization is the finite element analysis. Friction, one of the parameters that significantly affect the accuracy of numerical analysis, depends on several variants such as surface quality, contact pressure, lubrication, deformation, and the forming environment. Despite the complexity and difficulty of identifying friction mechanisms, accurate friction models are essential and hence have been proposed by numerous researchers. In this paper, the friction models in the previous studies are reviewed by categorizing them into the boundary lubrication condition and mixed-boundary lubrication condition according to their evaluative influences on friction. Since friction models have been proposed based on the contact theories, an overview on the contact models is also included in this paper. In addition, the contribution of several parameters on the friction such as surface roughness and material properties of the tool, adhesion, contact pressure, sliding speed, bulk deformation is also discussed. This review paper aims to provide an understanding and insight into the friction modeling and simulation along with associated friction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

major axis of ellipse, m

b:

minor axis of ellipse, m

AR :

real contact area, m2

A’:

crosssection of torn track, m2

AN :

nominal contact area, m2

d:

distance between the workpiece asperities and the tool, m

F:

friction force, N

Fb :

back-tension force, N

FN :

normal force, N

FP :

pulling force, N

fc :

shear factor

h:

film thickness, m

H:

hardness, Pa

Heff :

non-dimensional effective hardness, Pa

k:

shear strength of material, Pa

p:

plastic yield stress (Flow pressure), Pa

p0 :

initial plastic yield stress, Pa

pnom :

nominal contact pressure, Pa

plub :

hydrodynamic pressure, Pa

R:

radius of summits, m

s:

shear stress of metal junctions, Pa

Sq :

standard deviations of combined roughness, m

t:

time, s

v:

sliding velocity, m/s

v1 :

velocity in x and y direction at the lower surface, m/s

v2 :

velocity in x and y direction at the lower surface, m/s

w:

indentation depth of elliptical paraboloid, mm

x, y, z:

direction

α:

fractional real contact area

β:

effective attack angle

φ:

orientation angle

Φ:

surface height distribution, m−1

Φp :

pressure flow factor (Second order tensor)

Φs :

shear flow factor (Second order tensor)

γ:

surface orientation characteristic

η:

viscosity of lubricant, Pa·s

λ0.5x :

correction length of surface profile in x direction, m

λ0.5y :

correction length of surface profile in y direction, m

μ:

friction coefficient

θ:

hard asperity attack angle

ρ:

density of lubricant, kg/m3

σ:

standard deviation of roughness (root mean square of roughness), m

τ:

shear strength of boundary film, Pa

τlub :

hydrodynamic Shear strength, Pa

ω:

interference, m

ω1 :

critical interference at the point of initial yield, m

ω2 :

critical interference at the point of fully plastic flow, m

cutting:

cutting mode

lub:

lubricant

nom:

nominal

N:

normal direction

plowing:

plowing mode

wear:

wear mode

x, y, z:

axis

References

  • Almqvist, A., Lukkassen, D., Meidell, A. and Wall, P. (2007). New concepts of homogenization applied in rough surface hydrodynamic lubrication. Int. J. Engineering Science 45, 1, 139–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Amontons, G. (1699). De la résistance causée dans les machines, tant par le frottement des parties qui les composent que par la roideur des corps qu’on y employe, et la manière de calculer l’un et l’autre. Compte rendu de l’Académie des Sciences, 206–227.

  • Atala, H. F. and Rowe, G. W. (1975). Surface roughness changes during rolling. Wear 32, 2, 249–268.

    Article  Google Scholar 

  • Azushima, A. and Kudo, H. (1995). Direct observation of contact behaviour to interpret the pressure dependence of the coefficient of friction in sheet metal forming. CIRP Annals 44, 1, 209–212.

    Article  Google Scholar 

  • Bang, J., Park, N., Song, J., Kim, H. G., Bae, G. and Lee, M. G. (2021). Tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated U-bending based wear test. Metals 11, 2, 306.

    Article  Google Scholar 

  • Barlat, F., Brem, J. C., Yoon, J. W., Chung, K., Dick, R. E., Lege, D. J., Pourboghrat, F., Choi, S. H. and Chu, E. (2003). Plane stress yield function for aluminum alloy sheets—part 1: theory. Int. J. Plasticity 19, 9, 1297–1319.

    Article  MATH  Google Scholar 

  • Barlat, F., Gracio, J. J., Lee, M. G., Rauch, E. F. and Vincze, G. (2011). An alternative to kinematic hardening in classical plasticity. Int. J. Plasticity 27, 9, 1309–1327.

    Article  MATH  Google Scholar 

  • Bay, N. and Wanheim, T. (1976). Real area of contact and friction stress at high pressure sliding contact. Wear 38, 2, 201–209.

    Article  Google Scholar 

  • Bay, N., Wanheim, T. and Petersen, A. S. (1975). Ra and the average effective strain of surface asperities deformed in metal-working processes. Wear 34, 1, 77–84.

    Article  Google Scholar 

  • Bayada, G. and Faure, J. B. (1989). A double scale analysis approach of the Reynolds roughness comments and application to the journal bearing. J. Tribology 111, 2, 323–330.

    Article  Google Scholar 

  • Black, A. J., Kopalinsky, E. M. and Oxley, P. L. B. (1988). An investigation of the different regimes of deformation which can occur when a hard wedge slides over a soft surface: the influence of wedge angle, lubrication and prior plastic working of the surface. Wear 123, 1, 97–114.

    Article  Google Scholar 

  • Black, A. J., Kopalinsky, E. M. and Oxley, P. L. B. (1990). Sliding metallic friction with boundary lubrication: an investigation of a simplified friction theory and of the nature of boundary lubrication. Wear 137, 2, 161–174.

    Article  Google Scholar 

  • Bok, H. H., Choi, J., Barlat, F., Suh, D. W., and Lee, M. G. (2014). Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect. Int. J. Plasticity, 58, 154–183.

    Article  Google Scholar 

  • Bok, H. H., Lee, M. G., Kim, H. D. and Moon, M. B. (2010). Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part. Metals and Materials Int. 16, 2, 185–195.

    Article  Google Scholar 

  • Boman, R. and Ponthot, J. P. (2004). Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation. Computer Methods in Applied Mechanics and Engineering 193, 39–41, 4323–4353.

    Article  MathSciNet  MATH  Google Scholar 

  • Booker, J. F. and Huebner, K. H. (1972). Application of finite element methods to lubrication: an engineering approach. J. Lubrication Technology 94, 4, 313–323.

    Article  Google Scholar 

  • Bowden, F. P., Moore, A. J. W. and Tabor, D. (1943). The ploughing and adhesion of sliding metals. J. Applied Physics 14, 2, 80–91.

    Article  Google Scholar 

  • Bowden, F. P. and Tabor, D. (1939). The area of contact between stationary and moving surfaces. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 169, 938, 391–413.

    Google Scholar 

  • Bowden, F. P. and Tabor, D. (1942). Mechanism of metallic friction. Nature 150, 3798, 197–199.

    Article  Google Scholar 

  • Bowden, F. P. and Tabor, D. (1943). The lubrication by thin metallic films and the action of bearing metals. J. Applied Physics 14, 3, 141–151.

    Article  Google Scholar 

  • Bowden, F. P. and Young, J. E. (1951). Friction of clean metals and the influence of adsorbed films. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 208, 1094, 311–325.

    Google Scholar 

  • Bush, A. W., Gibson, R. D. and Thomas, T. R. (1975). The elastic contact of a rough surface. Wear 35, 1, 87–111.

    Article  Google Scholar 

  • Challen, J. M., McLean, L. J. and Oxley, P. L. B. (1984). Plastic deformation of a metal surface in sliding contact with a hard wedge: its relation to friction and wear. Proc. Royal Society of London. A. Mathematical and Physical Sciences 394, 1806, 161–181.

    Article  Google Scholar 

  • Challen, J. M. and Oxley, P. L. B. (1979). An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 2, 229–243.

    Article  Google Scholar 

  • Challen, J. M. and Oxley, P. L. B. (1984). A slip line field analysis of the transition from local asperity contact to full contact in metallic sliding friction. Wear 100, 1–3, 171–193.

    Article  Google Scholar 

  • Chang, W. R., Etsion, I. and Bogy, D. B. (1987). An elastic-plastic model for the contact of rough surfaces. J. Tribology 109, 2, 257–263.

    Article  Google Scholar 

  • Chen, K. K. and Sun, D. C. (1986). Hydrodynamic lubrication in hemispherical punch stretch forming. J. Applied Mechanics 53, 2, 440–449.

    Article  Google Scholar 

  • Childs, T. H. C. (1973). The persistence of asperities in indentation experiments. Wear 25, 1, 3–16.

    Article  Google Scholar 

  • Ciulli, E., Ferreira, L. A., Pugliese, G. and Tavares, S. M. O. (2008). Rough contacts between actual engineering surfaces: Part I. Simple models for roughness description. Wear 264, 11–12, 1105–1115.

    Article  Google Scholar 

  • Coulomb, C. A. (1821). Théorie des machines simples, en ayant égard au frottement de leurs parties et à la roideur des cordages. Académie Royale des Sciences. Quai des Augustins, Paris, France.

  • Czichos, H. (2009). Tribology: a systems approach to the science and technology of friction, lubrication, and wear. 1st edn. Elsevier Scientific Publishing company. Amsterdam, Netherlands.

    Google Scholar 

  • Darendeliler, H., Akkök, M. and Yücesoy, C. A. (2002). Effect of variable friction coefficient on sheet metal drawing. Tribology Int. 35, 2, 97–104.

    Article  Google Scholar 

  • Elrod, H. G. (1973). Thin-film lubrication theory for Newtonian fluids with surfaces possessing striated roughness or grooving. J. Lubrication Technology 95, 4, 484–489.

    Article  Google Scholar 

  • Ernst, H. E. M. E. and Merchant, M. E. (1940). Surface friction of clean metals: a basic factor in the metal cutting process. Proc. MIT Conf. Friction and Surface Finish. Cambridge, MA, USA.

  • Felder, E. and Samper, V. (1994). Experimental study and theoretical interpretation of the frictional mechanisms in steel sheet forming. Wear 178, 1–2, 85–94.

    Article  Google Scholar 

  • Filzek, J. and Groche, P. (2001). Assessment of the tribological function of lubricants for sheet metal forming. Bench Testing of Industrial Fluid Lubrication and Wear Properties Used in Machinery Applications. ASTM International.

  • Fogg, B. (1967). Preliminary study of the influence of stress and deformation in the substrate on junction growth and friction. Proc. Institution of Mechanical Engineers, Conf. Proc. 182, 11, 152–161.

    Article  Google Scholar 

  • Goedecke, A. (2013). Transient effects in friction. 1st edn. Springer-Verlag. Vienna, Austria.

    Book  MATH  Google Scholar 

  • Green, A. P. (1954). The plastic yielding of metal junctions due to combined shear and pressure. J. Mechanics and Physics of Solids 2, 3, 197–211.

    Article  Google Scholar 

  • Green, A. P. (1955). Friction between unlubricated metals: a theoretical analysis of the junction model. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 228, 1173, 191–204.

    Google Scholar 

  • Greenwood, J. A. and Rowe, G. W. (1965). Deformation of surface asperities during bulk plastic flow. J. Applied Physics 36, 2, 667–668.

    Article  Google Scholar 

  • Greenwood, J. A. and Tripp, J. H. (1967). The elastic contact of rough spheres. J. Applied Mechanics 34, 1, 153–159.

    Article  Google Scholar 

  • Greenwood, J. A. and Tripp, J. H. (1971). The contact of two nationally flat surfaces. Proc. Institution of Mechanical Engineers 28, 1, 91–96.

    Google Scholar 

  • Greenwood, J. A. and Williamson, J. P. (1966). Contact of nominally flat surfaces. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 295, 1442, 300–319.

    Google Scholar 

  • Grüebler, R. and Hora, P. (2009). Temperature dependent friction modeling for sheet metal forming. Int. J. Material Forming 2, 1, 251–254.

    Article  Google Scholar 

  • Halling, J., Arnell, R. D. and Nuri, K. A. (1988). The elastic — plastic contact of rough surfaces and its relevance in the study of wear. Proc. Institution of Mechanical Engineers, Part C: J. Mechanical Engineering Science 202, 4, 269–274.

    Google Scholar 

  • Halling, J. and Nuri, K. A. (1991). Elastic/plastic contact of surfaces considering ellipsoidal asperities of work-hardening multi-phase materials. Tribology Int. 24, 5, 311–319.

    Article  Google Scholar 

  • Hamrock, B. J., Schmid, B. J. and Jacobson, B. O. (2004). Fundamentals of fluid film lubrication. CRC Press. New York, NY, USA.

    Book  Google Scholar 

  • Han, S. S. and Kim, D. J. (2011). Contact pressure effect on frictional characteristics of steel sheet for autobody. AIP Conf. Proc. 1383, 1, 780–783.

    Article  Google Scholar 

  • Handzel-Powierza, Z., Klimczak, T. and Polijaniuk, A. (1992). On the experimental verification of the Greenwood-Williamson model for the contact of rough surfaces. Wear 154, 1, 115–124.

    Article  Google Scholar 

  • Hersey, M. D. (1914). The laws of lubrication of horizontal journal bearings. J. Washington Academy of Sciences 4, 19, 542–552.

    Google Scholar 

  • Hersey, M. D. (1966). Theory and research in lubrication: Foundation for future developments. John Wiley & Sons. New York, NY, USA.

    Google Scholar 

  • Hertz, H. (1881). On the contact of elastic solids. J. Reine und Angewandte Mathematik, 92, 156–171.

    MATH  Google Scholar 

  • Hisakado, T. (1970). On the mechanism of contact between solid surfaces: 4th report, surface roughness effects on dry friction. Bulletin of JSME 13, 55, 129–139.

    Article  Google Scholar 

  • Hisakado, T. (1974). Effect of surface roughness on contact between solid surfaces. Wear 28, 2, 217–234.

    Article  Google Scholar 

  • Hol, J., Alfaro, M. C., de Rooij, M. B. and Meinders, T. (2012). Advanced friction modeling for sheet metal forming. Wear, 286, 66–78.

    Article  Google Scholar 

  • Hol, J., Meinders, V. T., de Rooij, M. B. and Boogaard, A. H. (2015a). Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime. Tribology Int., 81, 112–128.

    Article  Google Scholar 

  • Hol, J., Meinders, V. T., Geijselaers, H. J. and van den Boogaard, A. H. (2015b). Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime. Tribology Int., 85, 10–25.

    Article  Google Scholar 

  • Holm, R. (1938). The friction force over the real area of contact. Wissenschaftliche Veröffentlichungen aus den Siemens-Werken 17, 4, 38–42.

    Google Scholar 

  • Hora, P., Heingärtner, J., Manopulo, N. and Tong, L. (2011). Zero failure production methods based on a process integrated virtual control. AIP Conf. Proc. 1383, 1, 35–47.

    Article  Google Scholar 

  • Hsu, T. C. and Wilson, W. R. (1994). Refined models for hydrodynamic lubrication in axisymmetric stretch forming. J. Tribology 116, 1, 101–109.

    Article  Google Scholar 

  • Hu, Y. K. and Liu, W. K. (1993). An ALE hydrodynamic lubrication finite element method with application to strip rolling. Int. J. Numerical Methods in Engineering 36, 5, 855–880.

    Article  MATH  Google Scholar 

  • Ike, H. and Makinouchi, A. (1990). Effect of lateral tension and compression on plane strain flattening processes of surface asperities lying over a plastically deformable bulk. Wear 140, 1, 17–38.

    Article  Google Scholar 

  • Jeng, Y. R. and Wang, P. Y. (2003). An elliptical microcontact model considering elastic, elastoplastic, and plastic deformation. J. Tribology 125, 2, 232–240.

    Article  Google Scholar 

  • Johnson, K. L. (1985). Contact mechanics. 1st edn. Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  • Johnson, K. L., Greenwood, J. A. and Poon, S. Y. (1972). A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear 19, 1, 91–108.

    Article  Google Scholar 

  • Karupannasamy, D. K., de Rooij, M. B. and Schipper, D. J. (2013). Multi-scale friction modelling for rough contacts under sliding conditions. Wear 308, 1–2, 222–231.

    Article  Google Scholar 

  • Karupannasamy, D. K., Hol, J., de Rooij, M. B., Meinders, T. and Schipper, D. J. (2012). Modelling mixed lubrication for deep drawing processes. Wear, 294, 296–304.

    Article  Google Scholar 

  • Karupannasamy, D. K., Hol, J., de Rooij, M. B., Meinders, T. and Schipper, D. J. (2014). A friction model for loading and reloading effects in deep drawing processes. Wear 318, 1–2, 27–39.

    Article  Google Scholar 

  • Kayaba, T. and Kato, K. (1978). Experimental analysis of junction growth with a junction model. Wear 51, 1, 105–116.

    Article  Google Scholar 

  • Kim, C., Lee, J. U., Barlat, F. and Lee, M. G. (2014). Frictional behaviors of a mild steel and a TRIP780 steel under a wide range of contact stress and sliding speed. J. Tribology 136, 2, 021606.

    Article  Google Scholar 

  • Korzekwa, D. A., Dawson, P. R. and Wilson, W. R. D. (1992). Surface asperity deformation during sheet forming. Int. J. Mechanical Sciences 34, 7, 521–539.

    Article  Google Scholar 

  • Lee, J., Lee, J. Y., Barlat, F., Wagoner, R. H., Chung, K., and Lee, M. G. (2013). Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels. Int. J. Plasticity, 45, 140–159.

    Article  Google Scholar 

  • Lee, J. Y., Barlat, F. and Lee, M. G. (2015). Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets. Int. J. Plasticity, 71, 113–135.

    Article  Google Scholar 

  • Lee, M. G., Kim, C., Pavlina, E. J. and Barlat, F. (2011). Advances in sheet forming—materials modeling, numerical simulation, and press technologies. J. Manufacturing Science and Engineering 133, 6, 061001.

    Article  Google Scholar 

  • Lee, M. G., Kim, D., Kim, C., Wenner, M. L., and Chung, K. (2005). Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications. Int. J. Plasticity 21, 5, 915–953.

    Article  MATH  Google Scholar 

  • Lee, Y., Jung, S., Baek, H., Lee, J., Choi, M. S. and Lee, M. G. (2019). Effect of anisotropic plasticity on the prediction of formability of E-form magnesium alloy sheet. Int. J. Automotive Technology 20, 6, 1183–1193.

    Article  Google Scholar 

  • Littlewood, M. and Wallace, J. F. (1964). The effect of surface finish and lubrication on the friction variation involved in the sheet-metal-forming process. Sheet Metal Industries, 41, 925–930.

    Google Scholar 

  • Lo, S. W. and Tsai, S. D. (2002). Real-time observation of the evolution of contact area under boundary lubrication in sliding contact. J. Tribology 124, 2, 229–238.

    Article  Google Scholar 

  • Luo, Z. J., Tang, C. R., Avitzur, B. and Van Tyne, C. J. (1984). A model for simulation of friction phenomenon between dies and workpiece. Applied Mathematics and Mechanics, 5, 3, 1297–1307.

    Article  Google Scholar 

  • Ma, X., De Rooij, M. and Schipper, D. (2010). A load dependent friction model for fully plastic contact conditions. Wear 269, 11–12, 790–796.

    Article  Google Scholar 

  • Makinouchi, A., Ike, H., Murakawa, M. and Koga, N. (1988). A finite element analysis of flattening of surface asperities by perfectly lubricated rigid dies in metal working processes. Wear 128, 2, 109–122.

    Article  Google Scholar 

  • Masen, M. A., de Rooij, M. B. and Schipper, D. J. (2005). Micro-contact based modelling of abrasive wear. Wear 258, 1–4, 339–348.

    Article  Google Scholar 

  • Masters, I. G., Williams, D. K. and Roy, R. (2013). Friction behaviour in strip draw test of pre-stretched high strength automotive aluminium alloys. Int. J. Machine Tools and Manufacture, 73, 17–24.

    Article  Google Scholar 

  • McCool, J. I. (1986). Predicting microfracture in ceramics via a microcontact model. J. Tribology 108, 3, 380–385.

    Article  Google Scholar 

  • McFarlane, J. S. and Tabor, D. (1950). Relation between friction and adhesion. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 202, 1069, 244–253.

    Google Scholar 

  • Meinders, T., Burchitz, I. A., Bonté, M. H. and Lingbeek, R. A. (2008). Numerical product design: Springback prediction, compensation and optimization. Int. J. Machine Tools and Manufacture 48, 5, 499–514.

    Article  Google Scholar 

  • Myung, D., Noh, W., Kim, J. H., Kong, J., Hong, S. T. and Lee, M. G. (2021). Probing the mechanism of friction stir welding with ALE based finite element simulations and its application to strength prediction of welded aluminum. Metals and Materials Int. 27, 4, 650–666.

    Article  Google Scholar 

  • Nayak, P. R. (1971). Random process model of rough surfaces. J. Lubrication Technology 93, 3 398–407.

    Article  Google Scholar 

  • Nayak, P. R. (1973a). Some aspects of surface roughness measurement. Wear 26, 2, 165–174.

    Article  Google Scholar 

  • Nayak, P. R. (1973b). Random process model of rough surfaces in plastic contact. Wear 26, 3, 305–333.

    Article  Google Scholar 

  • Parker, R. C. and Hatch, D. (1950). The static coefficient of friction and the area of contact. Proc. Physical Society. Section B 63, 3, 185.

    Article  Google Scholar 

  • Patir, N. and Cheng, H. S. (1978). An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubrication Technology 100, 1, 12–17.

    Article  Google Scholar 

  • Patir, N. and Cheng, H. S. (1979). Application of average flow model to lubrication between rough sliding surfaces. J. Lubrication Technology, 101, 2, 220–229.

    Article  Google Scholar 

  • Pugliese, G., Tavares, S. M. O., Ciulli, E. and Ferreira, L. A. (2008). Rough contacts between actual engineering surfaces: Part II. Contact mechanics. Wear 264, 11–12, 1116–1128.

    Article  Google Scholar 

  • Pullen, J. and Williamson, J. B. P. (1972). On the plastic contact of rough surfaces. Proc. Royal Society of London. A. Mathematical and Physical Sciences 327, 1569, 159–173.

    Article  Google Scholar 

  • Resende, T. C., Bouvier, S., Abed-Meraim, F., Balan, T., and Sablin, S. S. (2013). Dislocation-based model for the prediction of the behavior of bcc materials-grain size and strain path effects. Int. J. Plasticity 47, 29–48.

    Article  Google Scholar 

  • Reynolds, O. (1886). IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philosophical Trans. Royal Society of London, 177, 157–234.

    Article  MATH  Google Scholar 

  • Schipper, D. J. and De Gee, A. W. J. (1995). Lubrication modes and the IRG transition diagram. Lubrication Science 8, 1, 27–35.

    Article  Google Scholar 

  • Shaw, M. C., Ber, A. and Mamin, P. A. (1960). Friction characteristics of sliding surfaces undergoing subsurface plastic flow. J. Basic Engineering 82, 2, 342–345.

    Article  Google Scholar 

  • Sheu, S. and Wilson, W. R. (1994). Mixed lubrication of strip rolling. Tribology Trans. 37, 3, 483–493.

    Article  Google Scholar 

  • Sigvant, M., Pilthammar, J., Hol, J., Wiebenga, J. H., Chezan, T., Carleer, B. and van den Boogaard, A. H. (2016). Friction and lubrication modeling in sheet metal forming simulations of a Volvo XC90 inner door. IOP Conf. Series: Materials Science and Engineering, 159, 012021.

    Article  Google Scholar 

  • Song, Y. J., Oh, I. S., Hwang, S. H., Choi, H., Lee, M. G. and Kim, H. J. (2021). Numerically efficient sheet metal forming simulations in consideration of tool deformation. Int. J. Automotive Technology, 22, 1, 69–79.

    Article  Google Scholar 

  • Steffensen, H. and Wanheim, T. (1977). Asperities on asperities. Wear 43, 1, 89–98.

    Article  Google Scholar 

  • Stribeck, R. (1902). Die wesentlichen eigenschaften der gleit-und rollenlager. Zeitschrift des Vereins Deutscher Ingenieure, 46, 1341–1348.

    Google Scholar 

  • Suh, N. P. and Sin, H. C. (1981). The genesis of friction. Wear 69, 1, 91–114.

    Article  Google Scholar 

  • Sun, D. C., Chen, K. K. and Nine, H. D. (1987). Hydrodynamic lubrication in hemispherical punch stretch forming—modified theory and experimental validation. Int. J. Mechanical Sciences 29, 10–11, 761–776.

    Article  Google Scholar 

  • Sutcliffe, M. P. F. (1988). Surface asperity deformation in metal forming processes. Int. J. Mechanical Sciences 30, 11, 847–868.

    Article  Google Scholar 

  • Sutcliffe, M. P. F. (1999). Flattening of random rough surfaces in metal-forming processes. J. Tribology 121, 3, 433–440.

    Article  Google Scholar 

  • Tabor, D. (1959). Junction growth in metallic friction: the role of combined stresses and surface contamination. Proc. Royal Society of London. Series A. Mathematical and Physical Sciences 251, 1266, 378–393.

    Google Scholar 

  • Timoshenko, S. and Goodier, J. N. (1951). Theory of elasticity. 2nd edn. McGraw-Hill. New York, NY, USA.

    MATH  Google Scholar 

  • Trzepieciński, T. and Fejkiel, R. (2017). On the influence of deformation of deep drawing quality steel sheet on surface topography and friction. Tribology Int., 115, 78–88.

    Article  Google Scholar 

  • Trzepiecinski, T. and Lemu, H. G. (2020). Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming. Metals 10, 1, 47.

    Article  Google Scholar 

  • Wanheim, T. (1973). Friction at high normal pressures. Wear 25, 2, 225–244.

    Article  Google Scholar 

  • Wanheim, T. and Abildgaard, T. (1980). A mechanism for metallic friction. 4th Int. Conf. Production Engineering. Tokyo, Japan.

  • Wanheim, T., Bay, N. and Petersen, A. S. (1974). A theoretically determined model for friction in metal working processes. Wear 28, 2, 251–258.

    Article  Google Scholar 

  • Westeneng, J. D. (2001). Modelling of contact and friction in deep drawing processes. Ph.D. dissertation. University of Twente. Enshede, Netherlans.

    Google Scholar 

  • Wiebenga, J. H., van den Boogaard, A. H. and Klaseboer, G. (2012). Sequential robust optimization of a V-bending process using numerical simulations. Structural and Multidisciplinary Optimization 46, 1, 137–153.

    Article  Google Scholar 

  • Wilson, W. R. D. (1971). The temporary breakdown of hydrodynamic lubrication during the initiation of extrusion. Int. J. Mechanical Sciences 13, 1, 17–28.

    Article  Google Scholar 

  • Wilson, W. R. D. (1978). Friction and lubrication in bulk metal-forming processes. J. Applied Metalworking, 1, 1, 7–19.

    Article  Google Scholar 

  • Wilson, W. R. D. (1991). Friction models for metal forming in the boundary lubrication regime. J. Engineering Materials and Technology 113, 1, 60–68.

    Article  Google Scholar 

  • Wilson, W. R. D. and Hector Jr, L. G. (1991). Hydrodynamic lubrication in axisymmetric stretch forming—part 1: theoretical analysis. J. Tribology 113, 4, 659–666.

    Article  Google Scholar 

  • Wilson, W. R. D., Hsu, T. C. and Huang, X. B. (1995). A realistic friction model for computer simulation of sheet metal forming processes. J. Engineering for Industry 117, 2, 202–209.

    Article  Google Scholar 

  • Wilson, W. R. D. and Sheu, S. (1988). Real area of contact and boundary friction in metal forming. Int. J. Mechanical Sciences 30, 7, 475–489.

    Article  Google Scholar 

  • Wilson, W. R. D. and Wang, J. J. (1984). Hydrodynamic lubrication in simple stretch forming processes. J. Tribology 106, 1, 70–77.

    Article  Google Scholar 

  • Yang, T. S. and Lo, S. W. (2004). A finite element analysis of full film lubricated metal forming process. Tribology Int. 37, 8, 591–598.

    Article  Google Scholar 

  • Zhao, Y., Maietta, D. M. and Chang, L. (2000). An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribology 122, 1, 86–93.

    Article  Google Scholar 

Download references

Acknowledgement

MGL appreciates partial supports from National Research Foundation (NRF) of Korea (Grant No. 2019R1A5A6099595) and from KEIT (Project No. 20010453). Also, MGL & CMM thank the partial support from KEIT (No. 20010717) for investigating the effect of friction on forming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Moon, C. & Lee, MG. A Review on Friction and Lubrication in Automotive Metal Forming: Experiment and Modeling. Int.J Automot. Technol. 22, 1743–1761 (2021). https://doi.org/10.1007/s12239-021-0150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-021-0150-z

Key Words

Navigation