Skip to main content
Log in

Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

To reveal the effect of reaction temperature on the reduction of diesel particulate matter (PM) by non-thermal plasma (NTP) using oxygen as a gas source. The changes in the microcrystalline structure and the elemental state of PM before and after NTP oxidation at different temperatures were explored by Raman and X-ray photoelectron spectroscopy. After NTP oxidation, the disorder in the PM microcrystal structure and the amorphous carbon structure was reduced. The full width at half maximum (FWHM) of the D1 and D3 peaks decreased, and the FWHM of the G peak increased slightly. During the oxidation of PM, the carbon microcrystals grew and became restructured, and the graphitization of PM increased. After NTP oxidation, the content of O in PM increased as the reaction temperature increased, resulting in a gradual change in the binding form of O with C from C-O to C=O. The ability of temperature rise to promote the oxidation activity of NTP was gradually weakened for the thermal decomposition of NTP active substances. The microcrystalline structure and the occurrence state of C and O of PM changed with reaction temperature, indicating that the oxidizability of NTP on PM differed at different reaction temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NTP:

Non-thermal plasma

DPF:

Diesel particulate filter

PM:

Particulate matter

O3 :

Ozone

O2 :

Oxygen

O1:

PM original sample at 80 °C

O2:

PM original sample at 120 °C

O3:

PM original sample at 160 °C

N1:

PM sample oxidized by NTP at 80 °C

N2:

PM sample oxidized by NTP at 120 °C

N3:

PM sample oxidized by NTP at 160 °C

D1 Peak:

The Disorder 1 peak

D2 Peak:

The Disorder 2 peak

D3 Peak:

The Disorder 3 peak

D4 Peak:

The Disorder 4 peak

G Peak:

The Graphite peak

FWHM:

The full width at half maximum

R3:

R3 = ID3/(IG + ID2 + ID3)

ID1/IG:

The peak intensity ratio of the D1 peak to the G peak

C-O:

Carbon-oxygen single bond

C=O:

Carbon-oxygen double bonds

O-C=O:

Carboxyl carbon

References

  • Agudelo, J. R., Alvarez, A. and Armas, O. (2014). Impact of crude vegetable oils on the oxidation reactivity and nanostructure of diesel particulate matter. Combustion and Flame 161, 11, 2904–2915.

    Article  Google Scholar 

  • Babaie, M., Davari, P., Zare, F., Rahman, M., Rahimzadeh, H., Ristovski, Z. and Brown, R. (2013). Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor. IEEE Trans. Plasma Science 41, 8, 2349–2358.

    Article  Google Scholar 

  • Babaie, M., Davari, P., Talebizadeh, P., Zare, F., Rahimzadeh, H., Ristovski, Z. and Brown, R. (2015). Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chemical Engineering J., 276, 240–248.

    Article  Google Scholar 

  • Babaie, M., Kishi, T., Arai, M., Zama, Y., Furuhata, T., Ristovski, Z. and Brown, R. (2016). Influence of non-thermal plasma after-treatment technology on diesel engine particulate matter composition and NOx concentration. Int. J. Environmental Science and Technology 13, 1, 221–230.

    Article  Google Scholar 

  • Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M. and Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59, 10, 2267–2276.

    Article  Google Scholar 

  • Cadrazco, M., Santamaria, A. and Agudelo, J. R. (2019). Chemical and nanostructural characteristics of the particulate matter produced by renewable diesel fuel in an automotive diesel engine. Combustion and Flame, 203, 130–142.

    Article  Google Scholar 

  • Chen, L., Hu, X., Wang, J. and Yu, Y. (2019). Impacts of alternative fuels on morphological and nanostructural characteristics of soot emissions from an aviation piston engine. Environmental Science & Technology 53, 8, 4667–4674.

    Article  Google Scholar 

  • Dippel, B., Jander, H. and Heintzenberg, J. (1999). NIR FT Raman spectroscopic study of flame soot. Physical Chemistry Chemical Physics 1, 20, 4707–4712.

    Article  Google Scholar 

  • Fan, R., Cai, Y., Shi, Y. and Cui, Y. (2019). Effect of the reaction temperature on the removal of diesel particulate matter by ozone injection. Plasma Chemistry and Plasma Processing 39, 1, 143–163.

    Article  Google Scholar 

  • Fang, J., Zhang, Q., Meng, Z., Luo, Y., Ou, J., Du, Y. and Zhang, Z. (2020). Effects of ash composition and ash stack heights on soot deposition and oxidation processes in catalytic diesel particulate filter. J. Energy Institute 93, 5, 1942–1950.

    Article  Google Scholar 

  • Fang, J., Meng, Z., Li, J., Du, Y., Qin, Y., Jiang, Y., Bai, W. and Chase, G. G. (2019). The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters. Applied Thermal Engineering, 148, 860–867.

    Article  Google Scholar 

  • Ferrari, A. C. and Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B 61, 20, 14095.

    Article  Google Scholar 

  • Gao, J., Tian, G., Ma, C., Chen, J. and Huang, L. (2018). Physicochemical property changes during oxidation process for diesel PM sampled at different tailpipe positions. Fuel, 219, 62–68.

    Article  Google Scholar 

  • Geng, W., Kumabe, Y., Nakajima, T., Takanashi, H. and Ohkl, A. (2009). Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS). Fuel 88, 4, 644–649.

    Article  Google Scholar 

  • Gilham, R. J., Spencer, S. J., Butterfield, D., Seah, M. P. and Qulncey, P. G. (2008). On the applicability of XPS for quantitative total organic and elemental carbon analysis of airborne particulate matter. Atmospheric Environment 42, 16, 3888–3891.

    Article  Google Scholar 

  • Han, W. H., Cai, Y. X., Li, X. H., Wang, J., Wang, J., Li, K. H. and Wei, X. (2012). Raman spectroscopy analysis of carbon structural evolution of diesel particulate matters with the treatment of nonthermal plasma. Spectroscopy & Spectral Analysis 32, 8, 2152–2156.

    Google Scholar 

  • Hu, J., Hu, Z., Zhang, J. and Shuai, S. (2016). XPS analysis of the soot oxidation characteristics with Si-A catalyst effects. J. Automotive Safety and Energy 7, 2, 236.

    Google Scholar 

  • Ivleva, N. P., Mckeon, U., Niessner, R. and Pöschl, U. (2007). Raman micro spectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: Soot, humic-like substances, and inorganic compounds. Aerosol Science and Technology 41, 7, 655–671.

    Article  Google Scholar 

  • Jaramillo, I. C., Gaddam, C. K., Vander Wal, R. L., Huang, C. H., Levinthal, J. D. and Lighty, J. S. (2014). Soot oxidation kinetics under pressurized conditions. Combustion and Flame 161, 11, 2951–2965.

    Article  Google Scholar 

  • Ji, L., Cai, Y., Shi, Y., Fan, R., Wang, W. and Chen, Y. (2020). Effects of nonthermal plasma on microstructure and oxidation characteristics of particulate matter. Environmental Science & Technology 54, 4, 2510–2519.

    Article  Google Scholar 

  • Kalghatgi, G. (2019). Development of fuel/engine systems-the way forward to sustainable transport. Engineering 5, 3, 510–518.

    Article  Google Scholar 

  • Kim, K. J., Si, W. S., Jin, D. Y., Kim, J. H., Cho, J. H., Baek, S. H., Myung, C. L. and Park, S. S. (2020). Characterization of engine oil additive packages on diesel particulate emissions. J. Mechanical Science and Technology 34, 2, 931–939.

    Article  Google Scholar 

  • Knauer, M., Schuster, M. E., Su, D., Schlögl, R., Niessner, R. and Ivleva, N. P. (2009). Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy. J. Physical Chemistry A 113, 50, 13871–13880.

    Article  Google Scholar 

  • Kuwahara, T., Nishii, S., Kuroki, T. and Okubo, M. (2013). Complete regeneration characteristics of diesel particulate filter using ozone injection. Applied Energy, 111, 652–656.

    Article  Google Scholar 

  • Lin, H., Huang, Z., Shangguan, W. and Peng, X. (2007). Temperature-programmed oxidation of diesel particulate matter in a hybrid catalysis-plasma reactor. Proc. Combustion Institute 31, 2, 3335–3342.

    Article  Google Scholar 

  • Patel, M., Ricardo, C. L. A., Scardi, P. and Aswath, P. B. (2012). Morphology, structure and chemistry of extracted diesel soot-Part I: Transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and synchrotron X-ray diffraction study. Tribology Int., 52, 29–39.

    Article  Google Scholar 

  • Pu, X., Cai, Y., Shi, Y., Wang, J., Gu, L., Tian, J. and Li, W. (2018). Diesel particulate filter (DPF) regeneration using non-thermal plasma induced by dielectric barrier discharge. J. Energy Institute 91, 5, 655–667.

    Article  Google Scholar 

  • Ranji-Burachaloo, H., Masoomi-Godarzi, S., Khodadadi, A. A. and Mortazavi, Y. (2016). Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Applied Catalysis B: Environmental, 182, 74–84.

    Article  Google Scholar 

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. and Poschl, U. (2005). Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43, 8, 1731–1742.

    Article  Google Scholar 

  • Seong, H. J. and Boehman, A. L. (2013). Evaluation of Raman parameters using visible Raman microscopy for soot oxidative reactivity. Energy & Fuels 27, 3, 1613–1624.

    Article  Google Scholar 

  • Sheng, C. (2007). Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel 86, 15, 2316–2324.

    Article  Google Scholar 

  • Shi, Y. Cai, Y., Fan, R., Cui, Y., Chen, Y. and Ji, L. (2019a). Characterization of soot inside a diesel particulate filter during a nonthermal plasma promoted regeneration step. Applied Thermal Engineering, 150, 612–619.

    Article  Google Scholar 

  • Shi, Y., Cai, Y., Li, X., Chen, Y., Ding, D. and Tang, W. (2014). Mechanism and method of DPF regeneration by oxygen radical generated by NTP technology. Int. J. Automotive Technology 15, 6, 871–876.

    Article  Google Scholar 

  • Shi, Y., Cai, Y., Li, X., Ji, L., Chen, Y. and Wang, W. (2019b). Evolution of diesel particulate physicochemical properties using nonthermal plasma. Fuel, 253, 1292–1299.

    Article  Google Scholar 

  • Shi, Y., Cai, Y., Li, X., Pu, X., Zhao, N. and Wang, W. (2019c). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using non-thermal plasma assisted by exhaust waste heat. Plasma Science and Technology 22, 1, 015504.

    Article  Google Scholar 

  • Smith, D. M. and Chughtai, A. R. (1995). The surface structure and reactivity of black carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects 105, 1, 47–77.

    Article  Google Scholar 

  • Smith, M., Scudiero, L., Espinal, J., McEwen, J. S. and Garcia-Perez, M. (2016). Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon, 110, 155–171.

    Article  Google Scholar 

  • Song, J., Alam, M., Boehman, A. L. and Kim, U. (2006). Examination of the oxidation behavior of biodiesel soot. Combustion and Flame 146, 4, 589–604.

    Article  Google Scholar 

  • Tuinstra, F. and Koenig, J. L. (1970). Raman spectrum of graphite. J. Chemical Physics 53, 3, 1126–1130.

    Article  Google Scholar 

  • Vander Wal, R. L., Bryg, V. M. and Hays, M. D. (2011). XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Analytical Chemistry 83, 6, 1924–1930.

    Article  Google Scholar 

  • Wang, L., Song, C., Song, J., Lv, G., Pang, H. and Zhang, W. (2013). Aliphatic C-H and oxygenated surface functional groups of diesel in-cylinder soot: Characterizations and impact on soot oxidation behavior. Proc. Combustion Institute 34, 2, 3099–3106.

    Article  Google Scholar 

  • Wang, P., Gu, W., Lei, L., Cai, Y. and Li, Z. (2015). Microstructural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology. Applied Thermal Engineering, 91, 1–10.

    Article  Google Scholar 

  • Wang, Y., Alsmeyer, D. C. and McCreery, R. L. (2002). Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry Materials 2, 5, 557–563.

    Article  Google Scholar 

  • Wang, Y., Liang, X., Tang, G., Chen, Y., Dong, L. and Shu, G. (2017a). Impact of lubricating oil combustion on nanostructure, composition and graphitization of diesel particles. Fuel, 190, 237–244.

    Article  Google Scholar 

  • Wang, Y., Liang, X., Wang, K., Wang, Y., Dong, L. and Shu, G. (2016). Effect of base oil on the nanostructure and oxidation characteristics of diesel particulate matter. Applied Thermal Engineering, 106, 1311–1318.

    Article  Google Scholar 

  • Wang, Z., Yang, F. L., Zhang, J., Zhao, Y. and Qu, L. (2017b). Impact of EGR rate on soot nanostruction from a diesel engine fueled with biodiesel. Spectroscopy & Spectral Analysis, 37, 1973–1979.

    Google Scholar 

  • Wyzga, R. E. and Rohr, A. C. (2015). Long-term particulate matter exposure: Attributing health effects to individual PM components. J. Air & Waste Management Association 65, 5, 523–543.

    Article  Google Scholar 

  • Xia, W., Yang, J. and Liang, C. (2014). Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Applied Surface Science, 293, 293–298.

    Article  Google Scholar 

  • Yao, S., Shen, X., Zhang, X., Han, J., Wu, Z., Tang, X., Lu, H. and Jiang, B. (2017). Sustainable removal of particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic method. Chemical Engineering J., 327, 343–350.

    Article  Google Scholar 

  • Zouaoui, N., Labaki, M. and Jeguirim, M. (2014). Diesel soot oxidation by nitrogen dioxide, oxygen and water under engine exhaust conditions: Kinetics data related to the reaction mechanism. Comptes Rendus Chimie 17, 7–8, 672–680.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (51806085, 51676089), China Postdoctoral Science Foundation Project (2018 M642175), Jiangsu Province Postdoctoral Research Funding Project (2018K101C), Jiangsu Province Double Innovation Program and Jiangsu University Young Talent Research Funding Project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxi Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. Int.J Automot. Technol. 22, 1711–1721 (2021). https://doi.org/10.1007/s12239-021-0147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-021-0147-7

Key Words

Navigation