Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cryo-EM structure of the chloroplast ClpP complex

Abstract

Protein homoeostasis in plastids is strategically regulated by the protein quality control system involving multiple chaperones and proteases, among them the Clp protease. Here, we determined the structure of the chloroplast ClpP complex from Chlamydomonas reinhardtii by cryo-electron microscopy. ClpP contains two heptameric catalytic rings without any symmetry. The top ring contains one ClpR6, three ClpP4 and three ClpP5 subunits while the bottom ring is composed of three ClpP1C subunits and one each of the ClpR1–4 subunits. ClpR3, ClpR4 and ClpT4 subunits connect the two rings and stabilize the complex. The chloroplast Cpn11/20/23 co-chaperonin, a co-factor of Cpn60, forms a cap on the top of ClpP by protruding mobile loops into hydrophobic clefts at the surface of the top ring. The co-chaperonin repressed ClpP proteolytic activity in vitro. By regulating Cpn60 chaperone and ClpP protease activity, the co-chaperonin may play a role in coordinating protein folding and degradation in the chloroplast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-chaperonins interact with CrClpP.
Fig. 2: Co-chaperonins inhibit ClpP proteolytic activity.
Fig. 3: Cryo-EM structure of the Chlamydomonas ClpP complex.
Fig. 4: Properties of the Chlamydomonas ClpP core complex.
Fig. 5: Cryo-EM structure of the Chlamydomonas ClpP-Cpn11/20/23 complex.

Similar content being viewed by others

Data availability

Electron density maps have been deposited in the Electron Microscopy Data Bank under accession codes EMD-31171 for CrClpP-S1, EMD-31175 for ClpP-S2, EMD-31173 for ClpP-S2c and EMD-31174 for Cpn11/20/23. Related atom coordinates file also has been submitted to the Protein Data Bank, with accession codes 7EKO for CrClpP-S1 and 7EKQ for CrClpP-S2c. Source data are provided with this paper.

References

  1. Cyr, D. M., Hohfeld, J. & Patterson, C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368–375 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Janska, H., Kwasniak, M. & Szczepanowska, J. Protein quality control in organelles—AAA/FtsH story. Biochim. Biophys. Acta Mol. Cell Res. 1833, 381–387 (2013).

    Article  CAS  Google Scholar 

  4. Baker, B. M. & Haynes, C. M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 36, 254–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Sontag, E. M., Samant, R. S. & Frydman, J. Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem. 86, 97–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Hayer-Hartl, M., Bracher, A. & Hartl, F. U. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41, 62–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Kuo, W. et al. CHAPERONIN 20 mediates iron superoxide dismutase (Fe SOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol. 197, 99–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X. et al. Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor. Sci. China Life Sci. 57, 11–21 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X.-F. et al. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. Plant Mol. Biol. 83, 205–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rawlings, N. D. et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2017).

    Article  PubMed Central  Google Scholar 

  11. Nishimura, K., Kato, Y. & Sakamoto, W. Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol. 171, 2280–2293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Hartling, J. A. & Flanagan, J. M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Ripstein, Z. A., Vahidi, S., Houry, W. A., Rubinstein, J. L. & Kay, L. E. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife 9, e52158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez, K. E. et al. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Nat. Struct. Mol. Biol. 27, 406–416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fei, X. et al. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 9, e52774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gatsogiannis, C., Balogh, D., Merino, F., Sieber, S. A. & Raunser, S. Cryo-EM structure of the ClpXP protein degradation machinery. Nat. Struct. Mol. Biol. 26, 946–954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Sagarra, M. R. et al. Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP. J. Mol. Biol. 292, 819–825 (1999).

    Article  PubMed  Google Scholar 

  20. Kim, J. et al. Structures, functions, and interactions of ClpT1 and ClpT2 in the Clp protease system of Arabidopsis chloroplasts. Plant Cell 27, 1477–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sjögren, L. L. & Clarke, A. K. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Plant Cell 23, 322–332 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Olinares, P. D., Kim, J., Davis, J. I. & van Wijk, K. J. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Plant Cell 23, 2348–2361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stanne, T. M., Pojidaeva, E., Andersson, F. I. & Clarke, A. K. Distinctive types of ATP-dependent Clp proteases in cyanobacteria. J. Biol. Chem. 282, 14394–14402 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Majeran, W., Friso, G., van Wijk, K. J. & Vallon, O. The chloroplast ClpP complex in Chlamydomonas reinhardtii contains an unusual high molecular mass subunit with a large apical domain. FEBS J. 272, 5558–5571 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Schroda, M. & Vallon, O. in The Chlamydomonas Sourcebook 2nd edn (eds Harris, E. H. et al.) 671–729 (Academic Press, 2009).

  26. Derrien, B., Majeran, W., Wollman, F.-A. & Vallon, O. Multistep processing of an insertion sequence in an essential subunit of the chloroplast ClpP complex. J. Biol. Chem. 284, 15408–15415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Majeran, W., Wostrikoff, K., Wollman, F. A. & Vallon, O. Role of ClpP in the biogenesis and degradation of RuBisCO and ATP synthase in Chlamydomonas reinhardtii. Plants 8, 191 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  28. Ramundo, S. et al. Conditional depletion of the Chlamydomonas chloroplast ClpP protease activates nuclear genes involved in autophagy and plastid protein quality control. Plant Cell 26, 2201–2222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sjogren, L. L., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, A. K. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635–2649 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim, J. et al. Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell 21, 1669–1692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vahidi, S. et al. An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proc. Natl Acad. Sci. USA 117, 5895–5906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Derrien, B. et al. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features. Plant Mol. Biol. 80, 189–202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. LaBreck, C. J., May, S., Viola, M. G., Conti, J. & Camberg, J. L. The protein chaperone ClpX targets native and non-native aggregated substrates for remodeling, disassembly, and degradation with ClpP. Front Mol. Biosci. 4, 26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gersch, M. et al. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat. Commun. 6, 6320 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Sass, P. et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc. Natl Acad. Sci. USA 108, 17474–17479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kirstein, J. et al. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol. Med. 1, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Q. et al. Hetero-oligomeric CPN60 resembles highly symmetric group-I chaperonin structure revealed by Cryo-EM. Plant J. 98, 798–812 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Tsai, Y.-C. C., Mueller-Cajar, O., Saschenbrecker, S., Hartl, F. U. & Hayer-Hartl, M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287, 20471–20481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schroda, M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth. Res. 82, 221–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bracher, A., Whitney, S. M., Hartl, F. U. & Hayer-Hartl, M. Biogenesis and metabolic maintenance of rubisco. Annu Rev. Plant Biol. 68, 29–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Weiss, C., Bonshtien, A., Farchi-Pisanty, O., Vitlin, A. & Azem, A. Cpn20: Siamese twins of the chaperonin world. Plant Mol. Biol. 69, 227 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Koumoto, Y., Shimada, T., Kondo, M., Hara-Nishimura, I. & Nishimura, M. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J. Biol. Chem. 276, 29688–29694 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Rizzolo, K. et al. Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex. Nat. Commun. 12, 281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, J. et al. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol. 162, 157–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olinares, P. D., Kim, J. & van Wijk, K. J. The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta 1807, 999–1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Gallastegui, N. & Groll, M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem. Sci. 35, 634–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Maurizi, M. R., Thompson, M. W., Singh, S. K. & Kim, S.-H. in Methods in Enzymology Vol. 244 (ed. Barrett, A. J.) 314–331 (Academic Press, 1994).

  48. Derrien, B. & Vallon, O. One-step affinity purification of the chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii using the strep-tagII epitope tag. Bio-Protoc. 3, e315 (2013).

    Article  Google Scholar 

  49. Bai, C. et al. Protomer roles in chloroplast chaperonin assembly and function. Mol. Plant 8, 1478–1492 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  51. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  55. Raman, S. et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D. & DiMaio, F. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, R. Y.-R. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat. Methods 12, 335–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the NCPSS EM facility, Mass Spectrometry facility and Database and Computing facility for instrument support and technical assistance. This work was funded by the Strategic Priority Research Program of Chinese Academy of Sciences (grant nos. XDA24020103-2 and XDB37040103), the National Key Research and Development Program of China (2016YFD0100405 and 2017YFA0503503) and the Ministry of Agriculture of China (2016ZX08009-003-005), the ‘Initiative d’Excellence’ programme from the French State (grant ‘DYNAMO’, ANR-11-LABX-0011-01) and the DFG (TRR 175, project C02). We thank J. D. Rochaix and S. Ramundo for fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and Y.C. supervised the project. N.W. executed all biochemical experiments. Y.W. and X.Z. collected the cryo-EM data. Y.W. did data processing with initial map from X.Z. Y.W. and N.W. did model building and structural analysis. Q.Z. started the project and optimized the protein purification. C.P. performed the mass spectrometry analysis. W.Z. and Y.L. helped to purify protein. O.V. and M.S. were involved in the project design, data analysis and interpretation. C.L., N.W., O.V. and M.S. wrote the manuscript with modification from Y.W. and Y.C.

Corresponding authors

Correspondence to Yao Cong or Cuimin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Oliver Martin Mueller-Cajar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Analysis of the CrClpP complex and its interaction with co-chaperonins.

Mass determination of purified CrClpP complexes by AFFFF. The horizontal blue line across the peak displays the molar mass.

Extended Data Fig. 2 Analysis of the proteolytic activities of ClpP complexes from E. coli and Chlamydomonas.

(a) Degradation of β-casein was monitored in reactions containing β-casein (16 μM), CrClpP (0.4 μM), EcClpP (0.4 μM), Cpn20 (0.4 μM), Cpn11/20/23 (0.4 μM) and ADEP dissolved in DMSO (4, 8 or 18 μM) as indicated. The reactions were performed at 30°C and aliquots taken at the indicated time points were analysed via SDS–PAGE (15% gels) and Coomassie staining. The position of β-casein and the EcClpP protein are indicated. The casein degradation products resulting from proteolytic attack by the CrClpP complex are shown in the dotted box. Individual degradation experiment was repeated at least three times independently with similar results and a representative result was shown. (b) Densitometric quantification of β-casein from the reactions with CrClpP and ClpP+GroES. Shown are mean values from three independent replicates, error bars represent SD. (c) Gel filtration of ClpP complexes in the presence or absence of ADEP. 1 μM ClpP, 2 μM co-chaperonin or 1 μM ClpP supplemented with 18 μM ADEP were injected into a Superdex 200 PC 3.2/10 column with 20 mM MOPS-KOH, pH 7.5, 80 mM NaCl, 10 mM MgCl2, 10 mM KCl, 1 mM DTT, 10% glycerol. The relevant factions were collected and analysed by western blot with Cpn20 antibodies. The experiment was repeated three times independently with similar results and a representative result was shown.

Source data

Extended Data Fig. 3 Data collection and processing of ClpP particles visualized by cryo-EM.

(a) Representative micrograph of CrClpP complexes from three independent experiments with similar results. The scale bar equals 100 nm. (b) 2D class averages of CrClpP complexes. (c) Workflow of the 3D reconstruction based on cryo-EM data. A total of 578,978 particles were used for 3D classification.

Extended Data Fig. 4 Statistics of the final density map of ClpP.

(a) Overview of ClpP-S2 particles. (b) Overview of Cpn11/20/23 particles. (c) Gold standard Fourier Shell Correlation (FSC) curves of the final refinement map of ClpP-S1, ClpP-S2 and Cpn11/20/23. (d) Local resolution map of ClpP-S1, ClpP-S2 and co-chaperonin densities. (e) The particle orientation distributions in the final iteration of structure refinement. Red parts in the cylinders represent more particles in this direction.

Extended Data Fig. 5 Alignment of the amino acid sequences of ClpP/R subunits.

Sequence alignment of ClpP and ClpR subunits from Escherichia coli (Ec), Synechocystis sp. PCC6803 (Sy), Mycobacterium tuberculosis (Mb), Chlamydomonas reinhardtii (Cr) and Arabidopsis thaliana (At), extracted form an alignment of 243 algal, plant and bacterial sequences. Structural elements derived from the crystal structure of E. coli ClpP are shown on top of the alignment (α: α-helices, β: β-strands). The three catalytic residues are marked by red arrows. The best-conserved residues are shown with a coloured background. Chlamydomonas subunits (names in red) are shown with the experimentally-determined mature N terminus boxed and sections not assigned in the Clp-S1 structure in faded colours. ClpP1_Cr is shown after removal of the insertion sequence IS1 (at pos 59, purple arrow), so the N terminus of ClpP1c, starting near the end of IS1, is not shown. The less conserved regions of Clp subunits used for subunit assignment in Fig. S6B are underlined with red lines. The proline motif region is underlined with a blue line.

Extended Data Fig. 6 Pseudo-atomic models of Clp subunits and close-up views of the fitting of long side chains of selected amino acids into the density map.

(a) Pseudo-atomic models of conserved sequences of Clp subunits. The sequences correspond roughly to amino acids 27 to 175 in EcClpP. Each colour ribbon represents a different Clp subunit. (b) Close-up views of the density maps accommodating long side chains of selected amino acids in individual ClpP/R subunits. The selected sequence regions are indicated in Fig. S5 and Fig. S6.

Extended Data Fig. 7 Model-to-map fitting.

(a) Density maps of Clp subunits. Ribbon presentations of the structural models of the individual subunits are docked into the cryo-EM densities with the subunit assignment indicated below. For each subunit, the N- and C-terminal residues of the assigned sequence are indicated. (b) Correlation coefficient (CC) value of each subunit in the ClpP core complex. Individual Clp subunit was labelled in X-axis. The CC value is generated by Phenix 1.19. (c) A superimposition of the subunit models (coloured) and the cryo-EM density map (grey). Unassigned, additional density maps A2 and A3 are encircled with broken black lines.

Extended Data Fig. 8 Properties of the ClpP-Cpn11/20/23 complex.

(a) A superimposition of the EcClpP complex with ClpP-S2 particles. The additional density map A4 is the co-chaperonin complex. (b) Correlation coefficient (CC) values of each subunit of the ClpP-Cpn11/20/23 complex. Individual Clp and co-chaperonin subunit was labelled in X-axis. The CC value is generated by Phenix 1.19. (c) Density maps of co-chaperonin subunits. Ribbon presentations of the structural models of the individual co-chaperonin subunits, which are docked into the cryo-EM densities. (d) Insertion of the mobile loops of Cpn20N into the hydrophobic clefts in the surface of the ClpP P-ring.

Supplementary information

Supplementary Information

Supplementary Tables: Table 1. Summary information on peptides identified by mass spectrometry. Table 2. Summary information on sequences solved in the structure. In column 4, the numbering is based on the mature protein, except for ClpP1C (based on ClpP1H precursor). Sequences solved up to the N or C termini are in bold letters. Table 3. Cryo-EM data collection and refinement statistics.

Reporting Summary

Supplementary Data

Supplementary Data 1.

Source data

Source Data Fig. 1

Unprocessed gels.

Source Data Fig. 2

Unprocessed gels.

Source Data Extended Data Fig. 2

Unprocessed gels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, Y., Zhao, Q. et al. The cryo-EM structure of the chloroplast ClpP complex. Nat. Plants 7, 1505–1515 (2021). https://doi.org/10.1038/s41477-021-01020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01020-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research