Skip to main content
Log in

Conversion of High-Viscosity Oil of Ashalchinsk Deposit in the Presence of Activated Carbon and Supercritical Aqueous Fluid

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

This article presents the results from the primary treatment of heavy crude oil in the presence of activated carbon and a supercritical aqueous fluid. This makes it possible to reduce the content of sulfur and resinous-asphaltene substances significantly and to increase the amount of light fuel fractions. The work revealed distinctive features of the change in composition and properties of the liquid products of the conversion of crude oil in a hydrothermal fluid at 420°C and also in the presence of activated carbon at the process temperature 375°C. The possibility of reducing the conversion temperature of crude oil due to the presence of active carbon in the reaction medium is demonstrated. It was established that light fractions are formed in the transformed heavy crude oil in a hydrothermal fluid in the presence of activated carbon due to destruction of the resin-asphaltene components. The technology is aimed at environmentally safe and residue-free processing of heavy hydrocarbon resources to obtain high-quality raw materials rich in fuel fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. S. Huang, M. Cao, L. Cheng, Energy & Fuels, 32, No. 4, 4850-4858 (2018).

    Article  CAS  Google Scholar 

  2. S. Petrov, A. Nosova, N. Bashkirtseva, et al., IOP Conference Series: Earth and Environmental Science, 282 (1) (2019).

  3. R. M. Khusainov, A. N. Golovko, S. M. Petrov, et al., Russian Engineering Research, 37 (4), 351-353 (2017).

    Article  Google Scholar 

  4. M. A. Betiha et al., Energy Fuels, 34, No. 9, 11353-11364 (2020).

    Article  CAS  Google Scholar 

  5. D. Lin et al., Fuel, 245, 420-428 (2019).

    Article  CAS  Google Scholar 

  6. G. P. Kayukova, V. P. Morozov, R. R. Islamova, et al., Chemistry and Technology of Fuels and Oils, 51 (1), 117-126 (2015).

    Article  CAS  Google Scholar 

  7. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Khimiya i Tekhnologiya Topliv i Masel, No. 4, 30-37 (2014).

  8. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, et al., Khimiya i Tekhnologiya Topliv i Masel, No. 3, 6-8 (2014).

  9. S. M. Petrov, G. P. Kayukova, A. V. Vakhin et al., Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6 (6), 1624-1629 (2015).

    CAS  Google Scholar 

  10. Chen Li et al., Fuel, 257, 115779 (2019).

    Article  CAS  Google Scholar 

  11. S. Ashoori et al., Egyptian Journal of Petroleum, 26, No. 1, 209-213 (2017).

    Article  Google Scholar 

  12. L. R. Baibekova, S. M. Petrov, I. I. Mukhamatdinov, et al., International Journal of Applied Chemistry, 11 (5), 593-599 (2015).

    Google Scholar 

  13. H. F. Thimm et al., Canadian International Petroleum Conference, 45-47 (2005).

  14. Qing-Kun Liu, Yan Xu, Xue-Cai Tan, et al., Energy Fuels, 44, 3620-3628 (2017).

    Article  Google Scholar 

  15. S. M. Petrov, R. R. Zakiyeva, A. Y. Ibrahim, et al., International Journal of Applied Engineering Research, 10 (24), 44656-44661 (2015).

    Google Scholar 

  16. H. Machida et al., Journal of Supercritical Fluids, 43, 2-15 (2012).

    Google Scholar 

  17. Z. R. Nasyrova, G. P. Kayukova, Y. V. Onishchenko, et al., Energy Fuels, 10, 1329-1336 (2019).

    Google Scholar 

  18. Shuang-Mei Xin et al., Chemical Engineering Science, 146, 115-125 (2016).

    Article  CAS  Google Scholar 

  19. I. V. Kozhevnikova, A. L. Nuzhdina, O. N. Martyanov, The Journal of Supercritical Fluids, 551, 217-222 (2010).

    Article  Google Scholar 

  20. M. Hosseinpour et al., Fuel, 271, 117618 (2020).

    Article  CAS  Google Scholar 

  21. M. Hosseinpour et al., International Journal of Hydrogen Energy, 44, No. 51, 27671-27684 (2019).

    Article  CAS  Google Scholar 

  22. Morteza Hosseinpour et al., The Journal of Supercritical Fluids, 100, 70-78 (2015).

    Article  CAS  Google Scholar 

  23. R. Arriagada, R. Garcia, M. Molina-Sabio, et al., Microporous Mat., 8, No. 3-4, 123-130 (1997).

    Article  CAS  Google Scholar 

  24. M. Molina-Sabio, M. T. Gonzalez, F. Rodriguez-Reinoso, et al., Carbon, 34, No. 4, 505-509 (1996).

    Article  CAS  Google Scholar 

  25. R. H. Bradley, I. Sutherland, E. Sheng, Journal of Colloid and Interface Science, 179, No. 2, 561-569 (1996).

    Article  CAS  Google Scholar 

Download references

This work was supported by state contract No. 075-00315-20-01 (0674-2020-0005 Catalysis in oil refining and petrochemistry).

The work was carried out with equipment from the Center for Collective Use “Nanometrics and Nanotechnologies” of the Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Lakhova.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 14–19, September-October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, E.G., Lakhova, A.I., Petrov, S.M. et al. Conversion of High-Viscosity Oil of Ashalchinsk Deposit in the Presence of Activated Carbon and Supercritical Aqueous Fluid. Chem Technol Fuels Oils 57, 746–752 (2021). https://doi.org/10.1007/s10553-021-01301-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01301-3

Keywords

Navigation