Skip to main content
Log in

Production of Hydrocarbon Fuel Precursors from Bamboo in the Acetone/Lithium Bromide System

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The process of liquefaction catalyzed by acid in the acetone/lithium bromide system is an efficient method of transforming lignocellulosic biomass into hydrocarbon fuel precursors. In this study, the authors have investigated the effect of reaction temperature, residence time, and dosage of the catalysts on the liquefaction yield and composition of bio-oil precursors produced from the bamboo powder. To understand the liquefaction mechanism, the reaction of liquefaction is compared with the reaction of transformation of sugars and bamboo cellulose under the same conditions. The results show that 140°C is the optimum temperature of the liquefaction reaction. When the temperature is 140°C and the reaction time is 4 h, the bamboo liquefaction yield can reach 98.77%. It was also found that the acid dosage has a significant effect on both the liquefaction yield and the composition of the hydrocarbon fuel precursors. With increase in the dosage of the acid, the yield increases. Most phenols produced in the reaction of liquefaction originate from lignin, while most ketones and hydrocarbon precursors are produced by the transformation of cellulose and hemicellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. P. P. Pires, J. Arauzo, I. Fonts, M. E. Domine, A. F. Arroyo, M. E. Garcia-Perez, J. Montoya, F. Chejne, P. Pfromm, and M. Garcia-Perez, “Challenges and opportunities for bio-oil refining: a review,” Energy Fuel, 33, 4683-4720 (2019).

    Article  Google Scholar 

  2. H. J. Huang and X. Z. Yuan, “Recent progress in the direct liquefaction of typical biomass,” Prog. Energ. Combust., 49, 59-80 (2015).

    Article  Google Scholar 

  3. L. Zhang, Y. Liu, and Z. Li, “Effects of reduced severity of ammonium sulfite pretreatment on bamboo for high cellulose recovery,” RSC Adv., 9, 30489-30495 (2019).

    Article  CAS  Google Scholar 

  4. R. Zhou, R. Zhou, S. Wang, Z. Lan, X. Zhang, Y. Yin, S. Tu, S. Yang, and L. Ye, “Fast liquefaction of bamboo shoot shell with liquid-phase microplasma assisted technology,” Bioresour. Technol., 42, 1275-1278 (2016).

    Article  Google Scholar 

  5. J. M. O. Scurlocka, D. C. Daytonb, and B. Hamesb, “Bamboo: an overlooked biomass resource?” Biomass Bioenergy, 19, 229-244 (2000).

    Article  Google Scholar 

  6. J. Xu, X. Xie, J. Jiang, and J. Wang, “Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals,” Green Chem., 18, 3124-3138 (2016).

    Article  CAS  Google Scholar 

  7. V. Beatriz, R. Aingeru, N. García-Gómez, A. G. Gayubo, and B. Javier, “Recent research progress on bio-oil conversion into bio-fuels and raw chemicals: a review,” J. Chem. Technol. Biotechnol., 94, 670-689 (2019).

    Article  Google Scholar 

  8. J. Yip, M. Chen, Y. S. Szeto, and S. Yan, “Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents,” Bioresour. Technol., 100, 6674-6678 (2009).

    Article  CAS  Google Scholar 

  9. J. Feng, J. Jiang, J. Xu, Z. Yang, K. Wang, Q. Guan, and S. Chen, “Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass,” Appl. Energy, 154, 520-527 (2015).

    Article  CAS  Google Scholar 

  10. J. Wang, C. Xu, Z. Zhong, A. Deng, N. Hao, M. Li, X. Meng, and A. J. Ragauskas, “Catalytic conversion of bamboo sawdust over ZrO2−CeO2/γ-Al2O3 to produce ketonic hydrocarbon precursors and furans,” ACS Sustain. Chem. Eng., 6, 13797- 13806 (2018).

    Article  Google Scholar 

  11. C. C. Chang, C. P. Chen, C. S. Yang, Y. H. Chen, M. Huang, C. Y. Chang, J. L. Shie, M. H. Yuan, Y. H. Chen, and C. Ho, “Conversion of waste bamboo chopsticks to bio-oil via catalytic hydrothermal liquefaction using K2 CO3,” Sustain. Environ. Res., 26, 262-267 (2016).

    Article  CAS  Google Scholar 

  12. L. Shuai, Transforming Lignocelluloses to Sugars and Liquid Fuels, University of Wisconsin-Madison, Madison (2012), pp. 150-195.

    Google Scholar 

  13. T. Stahlberg, M. G. Sørensen, and A. Riisager, “Direct conversion of glucose to 5-(hydroxymethyl) furfural in ionic liquids with lanthanide catalysts,” Green Chem., 12, 321-325 (2010).

    Article  Google Scholar 

  14. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, Determination of Structural Carbohydrates and Lignin in Biomass, NREL/TP-510-42618, National Renewable Energy Laboratory, Golden, USA (2008).

    Google Scholar 

  15. Z. Jiang, B. Fei, and Z. Li, “Pretreatment of bamboo by ultra-high pressure explosion with a high pressure homogenizer for enzymatic hydrolysis and ethanol fermentation,” Bioresour. Technol., 214, 876-880 (2016).

    Article  CAS  Google Scholar 

  16. X. Wang, X. Xie, J. Sun, and W. Liao, “Effects of liquefaction parameters of cellulose in supercritical solvents of methanol, ethanol, and acetone on products yield and compositions,” Bioresour. Technol., 275, 123-129 (2019).

    Article  CAS  Google Scholar 

  17. C. G. Yoo, S. Zhang, and X. Pan, “Effective conversion of biomass into brommethyl furfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system,” RSC Adv., 7, 300-308 (2016).

    Article  Google Scholar 

  18. M. Erzengin and M. M. Kucuk, “Liquefaction of sunflower stalk by using supercritical extraction,” Energ. Conv. Manag., 39, 1203-1206 (1998).

    Article  CAS  Google Scholar 

  19. F. H. Isikgor and C. R. Becer, “Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers,” Pol. Chem., 6, 4497-4559 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (Project No. 2017YFD0600805) and the Fundamental Research Fund of the International Bamboo and Rattan Centre (Grant No. 1632019017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Li.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 69–74, September-October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ma, T. & Li, Z. Production of Hydrocarbon Fuel Precursors from Bamboo in the Acetone/Lithium Bromide System. Chem Technol Fuels Oils 57, 818–827 (2021). https://doi.org/10.1007/s10553-021-01312-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01312-0

Keywords

Navigation