Skip to main content
Log in

A Framework for Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance in a Continuous Space

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Groups of battery powered unmanned aerial vehicles (UAVs) are effective in a variety of scenarios that require autonomous cooperation to achieve a goal. However, the complexity of modeling and analyzing UAV cooperation in situations with stochastic elements leads to unique challenges. This paper introduces a framework for one such problem domain, the multi-UAV persistent search and retrieval task with stochastic target appearances (PSR-STA), in which UAVs continuously search an area for stochastically appearing targets to retrieve and deliver them to collector locations. Design decisions are introduced for understanding how to successfully simulate multi-UAV PSR-STA. Common tools for analyzing search algorithm effectiveness through statistical and graphical methods are presented. A case study of multi-UAV park cleanup is implemented to demonstrate the framework, where algorithms for choosing the locations of collectors and charging stations based on stochastic target appearance models are proposed, methods for continuous multi-UAV operation over a long period time are demonstrated, and the differences in effectiveness between four coverage search patterns are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdi, H., Williams, L.J.: Tukey’s Honestly Significant Difference (HSD) Test. Encyclopedia of Research Design, pp 1–5. Sage, Thousand Oaks (2010)

    Google Scholar 

  2. Alamdari, S., Fata, E., Smith, S.L.: Persistent monitoring in discrete environments: Minimizing the maximum weighted latency between observations. Int. J. Robot. Res. 33(1), 138–154 (2014). https://doi.org/10.1177/0278364913504011

    Article  Google Scholar 

  3. Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., Nieto, J.: A decentralized multi-agent unmanned aerial system to search, pick up, and relocate objects. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 123–128. IEEE. https://doi.org/10.1109/SSRR.2017.8088150 (2017)

  4. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116Get

    Article  Google Scholar 

  5. Beard, R.W., McLain, T.W.: Small Unmanned Aircraft: Theory and Practice. Princeton university press, Princeton (2012). https://doi.org/10.1515/9781400840601

    Book  Google Scholar 

  6. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006). https://doi.org/10.1016/j.omega.2004.10.004

    Article  Google Scholar 

  7. Bentz, W., Panagou, D.: Energy-aware persistent coverage and intruder interception in 3D dynamic environments. In: 2018 Annual American Control Conference (ACC), pp. 4426–4433. IEEE. https://doi.org/10.23919/ACC.2018.8431191 (2018)

  8. Bethke, B., How, J., Vian, J.: Multi-UAV persistent surveillance with communication constraints and health mangement. In: AIAA Guidance, Navigation, and Control Conference, p. 5654. https://doi.org/10.2514/6.2009-5654(2009)

  9. Bidstrup, C.C., Moore, J.J., Peterson, C.K., Beard, R.W.: Tracking multiple vehicles constrained to a road network from a uav with sparse visual measurements. In: 2019 American Control Conference (ACC), pp. 3817–3822. IEEE. https://doi.org/10.23919/ACC.2019.8815384 (2019)

  10. Boukoberine, M.N., Zhou, Z., Benbouzid, M.: A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 255, 113823 (2019). https://doi.org/10.1016/j.apenergy.2019.113823

    Article  Google Scholar 

  11. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  12. Cabreira, T., Brisolara, L., R Ferreira, P.: Survey on coverage path planning with unmanned aerial vehicles. Drones 3(1), 4 (2019). https://doi.org/10.3390/drones3010004

    Article  Google Scholar 

  13. Cocchioni, F., Frontoni, E., Ippoliti, G., Longhi, S., Mancini, A., Zingaretti, P.: Visual based landing for an unmanned quadrotor. J. Intell. Robot. Syst. 84(1-4), 511–528 (2016). https://doi.org/10.1007/s10846-015-0271-6

    Article  Google Scholar 

  14. Coffey, T., Montgomery, J.A.: The emergence of mini uavs for military applications. Defense Horizons (22), 1 (2002)

  15. Dai, W., Lu, H., Xiao, J., Zeng, Z., Zheng, Z.: Multi-robot dynamic task allocation for exploration and destruction. J. Intell. Robot. Syst. 98(2), 455–479 (2020)

    Article  Google Scholar 

  16. Darmanin, R.N., Bugeja, M.K.: A review on multi-robot systems categorised by application domain. In: 2017 25th Mediterranean Conference on Control and Automation (MED), pp. 701–706. IEEE. https://doi.org/10.1109/MED.2017.7984200 (2017)

  17. Di Franco, C., Buttazzo, G.: Coverage path planning for uavs photogrammetry with energy and resolution constraints. J. Intell. Robot. Syst. 83(3-4), 445–462 (2016). https://doi.org/10.1007/s10846-016-0348-x

    Article  Google Scholar 

  18. Dietrich, T., Krug, S., Zimmermann, A.: An empirical study on generic multicopter energy consumption profiles. In: 2017 Annual IEEE International Systems Conference (SysCon), pp. 1–6. IEEE. https://doi.org/10.1109/SYSCON.2017.7934762 (2017)

  19. Dobrin, A.: A review of properties and variations of voronoi diagrams (2021)

  20. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957). https://doi.org/10.2307/2372560

    Article  MathSciNet  MATH  Google Scholar 

  21. Enright, J., Frazzoli, E., Savla, K., Bullo, F.: On multiple uav routing with stochastic targets: Performance bounds and algorithms. In: Aiaa Guidance, Navigation, and Control Conference and Exhibit, p. 5830. https://doi.org/10.2514/6.2005-5830 (2005)

  22. Enright, J.J., Frazzoli, E., Pavone, M., Savla, K.: Uav Routing and Coordination in Stochastic, Dynamic Environments. Handbook of unmanned aerial vehicles, pp. 2079–2109. https://doi.org/10.1007/978-90-481-9707-1∖_28(2015)

  23. Erdelj, M., Saif, O., Natalizio, E., Fantoni, I.: Uavs that fly forever: Uninterrupted structural inspection through automatic uav replacement. Ad Hoc Netw. 94, 101612 (2019). https://doi.org/10.1016/j.adhoc.2017.11.012

    Article  Google Scholar 

  24. Farinelli, A., Iocchi, L., Nardi, D.: Distributed on-line dynamic task assignment for multi-robot patrolling. Auton. Robot. 41(6), 1321–1345 (2017)

    Article  Google Scholar 

  25. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: a Practical Guide. Wiley, Hoboken (2008). https://doi.org/10.1002/9780470770801

    Book  Google Scholar 

  26. Gainer, Jr, J., Dawkins, J., DeVries, L., Kutzer, M.: Persistent multi-agent search and tracking with flight endurance constraints. Robotics 8(1), 2 (2019). https://doi.org/10.3390/robotics8010002

  27. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

    Article  Google Scholar 

  28. Hansen, S., McLain, T., Goodrich, M.: Probabilistic searching using a small unmanned aerial vehicle. In: AIAA Infotech@ Aerospace 2007 Conference and Exhibit, p. 2740. https://doi.org/10.2514/6.2007-2740 (2007)

  29. Hartuv, E., Agmon, N., Kraus, S.: Scheduling spare drones for persistent task performance with several replacement stations. In: 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 95–97. IEEE (2019)

  30. Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 91, 99–131 (2017). https://doi.org/10.1016/j.paerosci.2017.04.003

    Article  Google Scholar 

  31. Jung, S., Ariyur, K.B.: Automated wireless recharging for small uavs. Int. J. Aeronaut. Space Sci. 18(3), 588–600 (2017). https://doi.org/10.5139/IJASS.2017.18.3.588

    Article  Google Scholar 

  32. Kadioglu, E., Urtis, C., Papanikolopoulos, N.: Uav coverage using hexagonal tessellation. In: 2019 27th Mediterranean Conference on Control and Automation (MED), pp. 37–42. IEEE. https://doi.org/10.1109/MED.2019.8798564 (2019)

  33. Kartal, B., Nunes, E., Godoy, J., Gini, M.: Monte carlo tree search with branch and bound for multi-robot task allocation. In: The IJCAI-16 Workshop on Autonomous Mobile Service Robots, vol. 33 (2016)

  34. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: A review of the state-of-the-art. In: Cooperative Robots and Sensor Networks 2015. https://doi.org/10.1007/978-3-319-18299-5_2, pp 31–51. Springer (2015)

  35. Kraft, D.: Algorithm 733: Tomp–fortran modules for optimal control calculations. ACM Trans Math. Softw (TOMS) 20(3), 262–281 (1994). https://doi.org/10.1145/192115.192124

    Article  MATH  Google Scholar 

  36. Kusnur, T., Mukherjee, S., Saxena, D.M., Fukami, T., Koyama, T., Salzman, O., Likhachev, M.: A planning framework for persistent, multi-uav coverage with global deconfliction. In: Field and Service Robotics. https://doi.org/10.1007/978-981-15-9460-1_32, pp 459–474. Springer (2021)

  37. Lanillos, P., Gan, S.K., Besada-Portas, E., Pajares, G., Sukkarieh, S.: Multi-uav target search using decentralized gradient-based negotiation with expected observation. Inform. Sci. 282, 92–110 (2014). https://doi.org/10.1016/j.ins.2014.05.054

    Article  MathSciNet  Google Scholar 

  38. Li, B., Moridian, B., Kamal, A., Patankar, S., Mahmoudian, N.: Multi-robot mission planning with static energy replenishment. J. Intell. Robot. Syst. 95(2), 745–759 (2019). https://doi.org/10.1007/s10846-018-0897-2

    Article  Google Scholar 

  39. Li, B., Patankar, S., Moridian, B., Mahmoudian, N.: Planning large-scale search and rescue using team of UAVs and charging stations. In: 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1–8. IEEE. https://doi.org/10.1109/SSRR.2018.8468631 (2018)

  40. Li, Z., Zhu, C., Gold, C.: Digital terrain modeling: principles and methodology. CRC press, Boca Raton. https://doi.org/10.1201/9780203357132 (2004)

  41. Lin, Z., Castano, L., Mortimer, E., Xu, H.: Fast 3d collision avoidance algorithm for fixed wing uas. J. Intell. Robot. Syst. 97(3), 577–604 (2020). https://doi.org/10.1007/s10846-019-01037-7

    Article  Google Scholar 

  42. Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., et al.: Localization, grasping, and transportation of magnetic objects by a team of MAVs in challenging desert-like environments. IEEE Robot. Autom. Lett. 3(3), 1576–1583 (2018). https://doi.org/10.1109/LRA.2018.2800121

    Article  Google Scholar 

  43. Matai, R., Singh, S.P., Mittal, M.L.: Traveling salesman problem: an overview of applications, formulations, and solution approaches. Traveling salesman problem, theory and applications, p. 1. https://doi.org/10.5772/12909(2010)

  44. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Distributed Autonomous Robotic Systems. https://doi.org/10.1007/978-4-431-35873-2_22, vol. 6, pp 221–230. Springer (2007)

  45. Mitchell, D., Chakraborty, N., Sycara, K., Michael, N.: Multi-robot persistent coverage with stochastic task costs. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3401–3406. IEEE. https://doi.org/10.1109/IROS.2015.7353851 (2015)

  46. Moon, B.G., Peterson, C.K.: Learned search parameters for cooperating vehicles using gaussian process regressions. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 493–502. IEEE. https://doi.org/10.1109/ICUAS.2018.8453323 (2018)

  47. Nigam, N.: The multiple unmanned air vehicle persistent surveillance problem: A review. Machines 2(1), 13–72 (2014). https://doi.org/10.3390/machines2010013

    Article  Google Scholar 

  48. Otte, M., Kuhlman, M.J., Sofge, D.: Auctions for multi-robot task allocation in communication limited environments. Auton. Robot. 44(3), 547–584 (2020)

    Article  Google Scholar 

  49. Palacios-Gasós, J. M., Montijano, E., Sagüés, C., Llorente, S.: Distributed coverage estimation and control for multirobot persistent tasks. IEEE Trans. Robot. 32(6), 1444–1460 (2016). https://doi.org/10.1109/TRO.2016.2602383

    Article  Google Scholar 

  50. Palacios-Gasós, J.M., Talebpour, Z., Montijano, E., Sagüés, C., Martinoli, A.: Optimal path planning and coverage control for multi-robot persistent coverage in environments with obstacles. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1321–1327. IEEE. https://doi.org/10.1109/ICRA.2017.7989156(2017)

  51. Park, H., Morrison, J.R.: System design and resource analysis for persistent robotic presence with multiple refueling stations. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 622–629. IEEE. https://doi.org/10.1109/ICUAS.2019.8797808 (2019)

  52. Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., Ruiz-Sanchez, F.: Toward aerial grasping and manipulation with multiple uavs. J. Intell. Robot. Syst. 70(1-4), 575–593 (2013). https://doi.org/10.1007/s10846-012-9743-0

    Article  Google Scholar 

  53. Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016). https://doi.org/10.1007/s11721-016-0118-1

    Article  Google Scholar 

  54. Pitonakova, L., Crowder, R., Bullock, S.: Information exchange design patterns for robot swarm foraging and their application in robot control algorithms. Front. Robot. AI 5, 47 (2018). https://doi.org/10.3389/frobt.2018.00047

    Article  Google Scholar 

  55. Prasetia, A.S., Wai, R.J., Wen, Y.L., Wang, Y.K.: Mission-based energy consumption prediction of multirotor uav. IEEE Access 7, 33055–33063 (2019). https://doi.org/10.1109/ACCESS.2019.2903644

    Article  Google Scholar 

  56. Radmanesh, M., Kumar, M., Guentert, P.H., Sarim, M.: Overview of path-planning and obstacle avoidance algorithms for uavs: A comparative study. Unmanned Syst. 6(02), 95–118 (2018). https://doi.org/10.1142/S2301385018400022

    Article  Google Scholar 

  57. Ranque, P., Freeman, D., Kernstine, K., Lim, D., Garcia, E., Mavris, D.: Stochastic agent-based analysis of uav mission effectiveness. In: 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th AIAA Lighter-Than, p. 6956. https://doi.org/10.2514/6.2011-6956 (2011)

  58. Ribeiro, R.G., Júnior, J.R., Cota, L.P., Euzébio, T.A., Guimarães, F.G.: Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2939094 (2019)

  59. Scherer, J., Rinner, B.: Persistent multi-uav surveillance with energy and communication constraints. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1225–1230. IEEE. https://doi.org/10.1109/COASE.2016.7743546 (2016)

  60. Semsch, E., Jakob, M., Pavlicek, D., Pechoucek, M.: Autonomous uav surveillance in complex urban environments. In: 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 82–85. IEEE. https://doi.org/10.1109/WI-IAT.2009.132 (2009)

  61. Seyedi, S., Yazicioğlu, Y., Aksaray, D.: Persistent surveillance with energy-constrained uavs and mobile charging stations. IFAC-PapersOnLine 52(20), 193–198 (2019). https://doi.org/10.1016/j.ifacol.2019.12.157

    Article  Google Scholar 

  62. Shakeri, R., Al-Garadi, M.A., Badawy, A., Mohamed, A., Khattab, T., Al-Ali, A.K., Harras, K.A., Guizani, M.: Design challenges of multi-uav systems in cyber-physical applications: A comprehensive survey and future directions. IEEE Commun. Surv. Tutor. 21(4), 3340–3385 (2019). https://doi.org/10.1109/COMST.2019.2924143

    Article  Google Scholar 

  63. Shakhatreh, H., Khreishah, A., Chakareski, J., Salameh, H.B., Khalil, I.: On the continuous coverage problem for a swarm of uavs. In: 2016 IEEE 37th Sarnoff Symposium, pp. 130–135. IEEE. https://doi.org/10.1109/SARNOF.2016.7846742 (2016)

  64. Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019). https://doi.org/10.1109/ACCESS.2019.2909530

    Article  Google Scholar 

  65. Singh, S., Lu, S., Kokar, M.M., Kogut, P.A., Martin, L.: Detection and classification of emergent behaviors using multi-agent simulation framework (wip). In: Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems, pp. 1–8 (2017)

  66. Smith, S.L., Rus, D.: Multi-robot monitoring in dynamic environments with guaranteed currency of observations. In: 49th IEEE Conference on decision and control (CDC), pp. 514–521. IEEE. https://doi.org/10.1109/CDC.2010.5717132 (2010)

  67. Spurný, V., Báča, T., Saska, M., Pěnička, R., Krajník, T., Thomas, J., Thakur, D., Loianno, G., Kumar, V.: Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles. J. Field Robot. 36(1), 125–148 (2019). https://doi.org/10.1002/rob.21816

    Article  Google Scholar 

  68. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  69. Stump, E., Michael, N.: Multi-robot persistent surveillance planning as a vehicle routing problem. In: 2011 IEEE International Conference on Automation Science and Engineering, pp. 569–575. IEEE. https://doi.org/10.1109/CASE.2011.6042503 (2011)

  70. Symington, A., Waharte, S., Julier, S., Trigoni, N.: Probabilistic target detection by camera-equipped uavs. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4076–4081. IEEE. https://doi.org/10.1109/ROBOT.2010.5509355 (2010)

  71. Szafir, D.A.: The good, the bad, and the biased: five ways visualizations can mislead (and how to fix them). Interactions 25(4), 26–33 (2018)

    Article  Google Scholar 

  72. Torabbeigi, M., Lim, G.J., Kim, S.J.: Drone delivery scheduling optimization considering payload-induced battery consumption rates. J. Intell. Robot. Syst. 97(3), 471–487 (2020). https://doi.org/10.1007/s10846-019-01034-w

    Article  Google Scholar 

  73. Trotta, A., Di Felice, M., Montori, F., Chowdhury, K.R., Bononi, L.: Joint coverage, connectivity, and charging strategies for distributed uav networks. IEEE Trans. Robot. 34(4), 883–900 (2018). https://doi.org/10.1109/TRO.2018.2839087

    Article  Google Scholar 

  74. Ure, N.K., Chowdhary, G., Toksoz, T., How, J.P., Vavrina, M.A., Vian, J.: An automated battery management system to enable persistent missions with multiple aerial vehicles. IEEE/ASME Trans. Mechatron. 20(1), 275–286 (2014). https://doi.org/10.1109/TMECH.2013.2294805

    Article  Google Scholar 

  75. Vasquez-Gomez, J.I., Marciano-Melchor, M., Valentin, L., Herrera-Lozada, J.C.: Coverage path planning for 2d convex regions. J. Intell. Robot. Syst. 97(1), 81–94 (2020). https://doi.org/10.1007/s10846-019-01024-y

    Article  Google Scholar 

  76. Villa, D.K., Brandão, A.S., Sarcinelli-Filho, M.: A survey on load transportation using multirotor uavs. J. Intell. Robot. Syst. ,1–30. https://doi.org/10.1007/s10846-019-01088-w (2019)

  77. Wei, C., Hindriks, K.V., Jonker, C.M.: Dynamic task allocation for multi-robot search and retrieval tasks. Appl. Intell. 45(2), 383–401 (2016). https://doi.org/10.1007/s10489-016-0771-5

    Article  Google Scholar 

  78. Winfield, A.F.: Towards an engineering science of robot foraging. In: Distributed Autonomous Robotic Systems. https://doi.org/10.1007/978-3-642-00644-9_16, vol. 8, pp 185–192. Springer (2009)

  79. Wu, L., Ke, Y., Chen, B.M.: Systematic modeling of rotor-driving dynamics for small unmanned aerial vehicles. Unmanned Syst. 6(02), 81–93 (2018). https://doi.org/10.1142/S2301385018400010

    Article  Google Scholar 

  80. Yu, J., Karaman, S., Rus, D.: Persistent monitoring of events with stochastic arrivals at multiple stations. IEEE Trans. Robot. 31(3), 521–535 (2015). https://doi.org/10.1109/TRO.2015.2409453

    Article  Google Scholar 

  81. Zedadra, O., Jouandeau, N., Seridi, H., Fortino, G.: Multi-agent foraging: state-of-the-art and research challenges. Complex Adapt. Syst. Model. 5(1), 3 (2017). https://doi.org/10.1186/s40294-016-0041-8

    Article  Google Scholar 

  82. Zhang, L., Wang, J., Lin, Z., Lin, L., Chen, Y., He, B.: Distributed cooperative obstacle avoidance for mobile robots using independent virtual center points. J. Intell. Robot. Syst., 1–15. https://doi.org/10.1007/s10846-019-01084-0 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Salmon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, R., Salmon, J. A Framework for Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance in a Continuous Space. J Intell Robot Syst 103, 65 (2021). https://doi.org/10.1007/s10846-021-01484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01484-1

Keywords

Navigation