Skip to main content

Advertisement

Log in

Economic potential of rice precision farming in malaysia: the case study of Felcra Seberang Perak

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Many attempts/efforts have been made to cope with the fluctuated production performance in rice production in Malaysia. There is a crucial need in technological advancement to tackle the issue of environmental variability, decreasing productivity and the rising cost in rice cultivation. The use of variable rate technology has increased rice yield through efficient resource allocation. Notwithstanding, an evaluation of the feasibility of this technology is required in terms of economic and intangible benefits. Therefore, this study attempted to determine the potential benefits that could come out of the use of precision agriculture technologies in rice cultivation. A precision farming technology package was developed by the Malaysian Agricultural Research and Development Institute. It consists of two components, namely a variable rate seed application system and a variable rate fertilizer application system. The study estimated the monetary benefits gained from the use of these two technology components at Federal Land Consolidation and Rehabilitation Authority Seberang Perak. The study also compared the performance of the technology package against the conventional practice. The Cost–Benefit Analysis exercise has been implemented to show the benefits and implications comprised in the study. It was found that there is an additional net income per hectare in between Malaysian Ringgit (MYR) 1109 to MYR 1333 due to the reduction in the production cost if the precision farming technology packages were adopted. The advancement in two cultivation stages showed a positive impact monetarily for both small-scale and large-scale farmers in the study. However, many challenges are to be faced for the technologies implementation since the existing rice cultivation recommended practices throughout all stages even yet to be practiced and taken seriously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah, M. Z. K., Ismail, R., Ahmad, T., & Abu Bakar, B. (2018). Fast technique in determining land levelling index for paddy production. Buletin Teknologi MARDI, 13, 21–25.

  • Abu-Dalbouh, H. M. (2013). A questionnaire approach based on the technology acceptance model for mobile tracking on patient progress applications. Journal of Computer Science, 9(6), 763–770. https://doi.org/10.3844/jcssp.2013.763.770

    Article  Google Scholar 

  • Abu Bakar, B. H., Ahmad, M. T., Ghazali, M. S. S., Rani, M. N. F. A., Bookeri, M. A. M., Rahman, M. S. A., Abdullah, M. Z. K., & Ismail, R. (2019). Leveling-index based variable rate seeding technique for paddy. Precision Agriculture, 21(0123456789), 729–736. https://doi.org/10.1007/s11119-019-09692-4

    Article  Google Scholar 

  • Abu Hassan, D. (2004). Canopy management for variable N Application. In Proceedings of the APAC Conference on Precision Farming.

  • Abu Hassan, D., Ayob, H., Sharil Shah, G. M., & Rukunudin, K. I. H. (2009). Package Technology for Variable Rate Fertilizer Application. In Proceedings of the National Conference on Agricultural and Food Mechanization, NCAFM 2009.

  • Abu Hassan, D., Ayob, A. H., Muhamad, R. M., Rukunudin, I. H., Mohd, S. A. R., Shahril, S. G. M. & Azizul, G. (2007). Light weight high clearance prime mover for precision input application. In Proceedings of the World Engineering Congress.

  • Abu Hassan, D., Ayob, A. H. & Sharil, S. G. M. (2001). Monitoring crop canopy development for nutrient management. In Proceedings of the National Conference on Agricultural and Food Mechanization, NCAFM 2001.

  • Agarwal, M. C., & Goel, A. C. (1981). Effect of field levelling quality on irrigation efficiency and crop yield. Agricultural Water Management, 4(4), 457–464. https://doi.org/10.1016/0378-3774(81)90033-0

    Article  Google Scholar 

  • Ariff, E. E. E., Serin, T., Sukir, S., & Ali, A. K. (2010). Cost and return for local fowl rearing. Economic and Technology Management Review, 5, 41–49.

  • Ayob, A. H., Abu Hassan, D. & Mohamad, F. Z. (2009). Precision farming—variable seeding rate for mechanized direct seeded rice. In Proceedings of the National Conference on Agricultural and Food Mechanization, NCAFM 2009.

  • Ayob, A. H., Syahrin, M. Y., Abu Hassan, D., & Ayob, K. (1991). Precision levelling of paddy land: Why, when and how? Teknologi Kejuruteraan Pertanian, 2, 21–29.

    Google Scholar 

  • Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520.

    Article  Google Scholar 

  • Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of the Total Environment, 545, 227–235. https://doi.org/10.1016/j.scitotenv.2015.12.104

    Article  CAS  PubMed  Google Scholar 

  • Chan, C. W., & Rukunudin, I. H. (2009). Precision Farming Technology for large scale rice production. In Proceedings of the National Conference on Agricultural and Food Mechanization, NCAFM 2009.

  • Chunjiang, Z., Aning, J., Wenjiang, H., Keli, L., Liangyun, L., & Jihua, W. (2007). Evaluation of variable-rate nitrogen recommendation of winter wheat based on SPAD chlorophyll meter measurement. New Zealand Journal of Agricultural Research, 50(5), 735–741. https://doi.org/10.1080/00288230709510345

    Article  Google Scholar 

  • Department of Agriculture. (2015). Pakej Teknologi Padi [Paddy Technology Package]. Perpustakaan Negara Malaysia.

  • Ehsani, R., Schumann, A., & M. Salyani. (2009). Variable rate technology for Florida citrus1. Florida Cooperative Extension Service. AE444. University of Florida, Institute of Food and Agricultural. Retrieved 19 April, 2020, from http://ufdcimages.uflib.ufl.edu/IR/00/00/33/14/00001/AE44400.pdf.

  • El-Osta, H. S., & Mishra, A. K. (2001). Adoption and economic impact of site-specific technologies in US agriculture [Paper presentation]. American Agricultural Economic Association Annual Meeting.

  • English, B. C., Mahajanashetti, S. B., & Roberts, R. K. (1999). Economic and environmental benefits of variable rate application of nitrogen to corn fields: Role of variability and weather [Paper presentation]. American Agricultural Economics Association Meeting.

  • Fairhurst, T., Witt, C., Buresh, R., Dobermann, A., & Fairhurst, T. (2007). Rice: A practical guide to nutrient management. International Rice Research Institute.

    Google Scholar 

  • Firdaus, R. R., Latiff, I. A., & Borkotoky, P. (2013). The impact of climate change towards Malaysian paddy farmers. Journal of Development and Agricultural Economics, 5(2), 57–66. https://doi.org/10.5897/JDAE12.105

    Article  Google Scholar 

  • Food and Agriculture Organization (2017). Study on Malaysia’s experience with large scale entrepreneurial management of small farm in selected granary areas in Peninsular Malaysia. FAO. [Unpublished report].

  • Grisso, R. D., Alley, M. M., Thomason, W. E., Holshouser, D. L., & Roberson, G. T. (2011). Precision farming tools: variable-rate application. Virginia Cooperative Extension, 442–505.

  • Kebede, Y., Gunjal, K., & Coffin, G. (1990). Adoption of new technologies in Ethiopian agriculture: The case of Tegulet-Bulga district Shoa province. Agricultural Economics, 4(1), 27–43. https://doi.org/10.1111/j.1574-0862.1990.tb00103.x

    Article  Google Scholar 

  • Khan, S. A. B. M. N., Baten, M. A., & Ramli, R. (2016). Technical, allocative, cost, profit and scale efficiencies in Kedah, Malaysia rice production: A Data Envelopment Analysis. ARPN Journal of Agricultural and Biological Science, 11(8), 322–335.

    Google Scholar 

  • Koch, B., Khosla, R., Frasier, W. M., Westfall, D. G., & Inman, D. (2004). Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agronomy Journal, 96(6), 1572–1580. https://doi.org/10.2134/agronj2004.1572

    Article  Google Scholar 

  • López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., Mesas-Carrascosa, F. J., & Pena, J. M. (2016). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precision Agriculture, 17(2), 183–199. https://doi.org/10.1007/s11119-015-9415-8

    Article  Google Scholar 

  • Mailena, L., Mad, N. S., Alias, R., & Latief, I. (2014). Rice farms efficiency and factors affecting the efficiency in MADA Malaysia. Journal of Applied Sciences, 14(18), 2177–2182. https://doi.org/10.3923/jas.2014.2177.2182

    Article  Google Scholar 

  • Masud, M. M., Rahman, M. S., Al-Amin, A. Q., Kari, F., & Leal Filho, W. (2014). Impact of climate change: An empirical investigation of Malaysian rice production. Mitigation and Adaptation Strategies for Global Change, 19(4), 431–444. https://doi.org/10.1007/s11027-012-9441-z

    Article  Google Scholar 

  • Mohd Syaifudin, A. R., Mohd Sharil Shah, M. G., Teoh, C. C., Mohamad Aufa, B., Mohd Nadzim, N., Fakrul Radzi, F. Z., Mohamad Najib, M. Y., Fairol Zamzuri, C. S., Abu Hassan, D., & Mohd Haffiez, A. S. (2016). Variable rate application of fertilizer in rice precision farming. In Proceedings of the International Conference on Agricultural and Food Engineering, CAFEi 2016.

  • Nor, N. A. A. M., Suhaimee, S., & Awang, M. R. (2016). Economic production and technology needs of coffee: Comparison of coffee cherry and coffee bean. Economic and Technology Management Review, 11a, 27–35.

  • Rahim, H., Ariff, E. E. E., Sobri, A. A., & Wahab, M. A. M. A. (2019). The assessment of input factors and technical efficiency of rice in IADA Seberang Perak, Kerian and Barat Laut Selangor. Economic and Technology Management Review, 14, 13–22.

    Google Scholar 

  • Rahim, H., Ariff, E. E. E., Sobri, A. A., & Wahab, M. A. M. A. (2020). The assessment of input factors and technical efficiency of rice production at Integrated Agriculture Development Authority (IADA) Pekan and Rompin. Economic and Technology Management Review, 15, 23–35.

    Google Scholar 

  • Rahim, H., Wahab, M. A. M. A., Amin, M. Z. M., Harun, A., & Haimid, M. T. (2018). Perception and acceptance of farmers on precision farming technology in selected granary area. Economic and Technology Management Review, 13, 97–110.

  • Reichardt, M., Jürgens, C., Klöble, U., Hüter, J., & Moser, K. (2009). Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. Precision Agriculture, 10(6), 525. https://doi.org/10.1007/s11119-009-9112-6

    Article  Google Scholar 

  • Rezaei-Moghaddam, K., & Salehi, S. (2010). Agricultural specialists intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model. African Journal of Agricultural Research, 5(11), 1191–1199.

    Google Scholar 

  • Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., Metz, N., & O’Callaghan, C. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agriculture, 13(2), 181–199. https://doi.org/10.1007/s11119-011-9236-3

    Article  Google Scholar 

  • Roberts, R. K., English, B. C., & Mahajanashetti, S. B. (2000). Evaluating the returns to variable rate nitrogen application. Journal of Agricultural and Applied Economics, 32(1), 133–143. https://doi.org/10.22004/ag.econ.15393

    Article  Google Scholar 

  • Soha, M. E. D. (2014). The partial budget analysis for sorghum farm in Sinai Peninsula, Egypt. Annals of Agricultural Sciences, 59(1), 77–81. https://doi.org/10.1016/j.aoas.2014.06.011

    Article  Google Scholar 

  • Thrikawala, S., Weersink, A., Fox, G., & Kachanoski, G. (1999). Economic feasibility of variable-rate technology for nitrogen on corn. American Journal of Agricultural Economics, 81(4), 914–927. https://doi.org/10.2307/1244334

    Article  Google Scholar 

  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  • Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A., & Kristjanson, P. (2011). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144. https://doi.org/10.1016/j.envsci.2011.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Malaysian Agricultural Research and Development Institute (MARDI) under the 11th Malaysia Plan development fund. The authors would like to thank all personnel that was involved in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairazi Rahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, H., Ghazali, M.S.S.M., Bookeri, M.A.M. et al. Economic potential of rice precision farming in malaysia: the case study of Felcra Seberang Perak. Precision Agric 23, 812–829 (2022). https://doi.org/10.1007/s11119-021-09862-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09862-3

Keywords

Navigation