Skip to main content
Log in

Dynamic Response of Composite Materials with 2D Reduced Micromorphic Model

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this article, we introduce a complete set of constitutive relations and field equations for the linear reduced micromorphic model. We further investigate the internal variables and their relationship in the case of two-dimensional (2D) wave propagation. The dynamic response is investigated for composite materials, which is due to an external wave in two dimensions applied at the boundary of the considered domain. Analytical solutions for the model are unavailable at this stage due to dependency of the field equations on spatial and time variables in a complicated manner. A finite element approach is adopted to derive approximate solutions for the field equations, and numerical finite element solutions for the internal fields are presented in detail and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cosserat E, Cosserat F. Theory of deformable bodies. Paris: A. Herman Sons; 1909.

    MATH  Google Scholar 

  2. Mindlin RD, Tiersten HF. Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal. 1962;11:415–48. https://doi.org/10.1007/BF00253946.

    Article  MathSciNet  MATH  Google Scholar 

  3. Koiter W. Couple stresses in the theory of elasticity, I and II. Philos Trans R Soc London B. 1964;67:17–44.

    MathSciNet  MATH  Google Scholar 

  4. Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39:2731–43. https://doi.org/10.1016/S0020-7683(02)00152-X.

    Article  MATH  Google Scholar 

  5. Hadjesfandiari AR, Dargush GF. Couple stress theory for solids. Int J Solids Struct. 2011;48:2496–510. https://doi.org/10.1016/j.ijsolstr.2011.05.002.

    Article  Google Scholar 

  6. Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct. 1965;1:417–38. https://doi.org/10.1016/0020-7683(65)90006-5.

    Article  Google Scholar 

  7. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425–35. https://doi.org/10.1016/0020-7225(72)90050-X.

    Article  MATH  Google Scholar 

  8. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001.

    Article  MathSciNet  MATH  Google Scholar 

  9. Mindlin RD. Micro-structure in linear elasticity. Arch Ration Mech Anal. 1964;16:51–78. https://doi.org/10.1007/BF00248490.

    Article  MathSciNet  MATH  Google Scholar 

  10. Eringer AC. Theory of microstretch elasticity. In: Microcontinuum field theories. New York, NY: Springer; 1999. p. 249–67.

    Chapter  Google Scholar 

  11. Forest S, Sievert R. Nonlinear microstrain theories. Int J Solids Struct. 2006;43:7224–45. https://doi.org/10.1016/j.ijsolstr.2006.05.012.

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen AC, Suhubi ES. Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci. 1964;2:189–203. https://doi.org/10.1016/0020-7225(64)90004-7.

    Article  MathSciNet  MATH  Google Scholar 

  13. Eringen AC. Simple microfluids. Int J Eng Sci. 1964;2:205–17. https://doi.org/10.1016/0020-7225(64)90005-9.

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringrn AC. Balance laws of micromorphic continua revisited. Int J Eng Sci. 1992;30:805–10.

    Article  MathSciNet  Google Scholar 

  15. Eringen AC. Balance laws of micromorphic continua revisited. Int J Eng Sci. 1992;30:805–10. https://doi.org/10.1016/0020-7225(92)90109-T.

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen AC. Microcontinuum field theories. New York: Springer; 1999.

    Book  Google Scholar 

  17. Neff P, Ghiba ID, Madeo A, Placidi L, Rosi G. A unifying perspective: The relaxed linear micromorphic continuum. Contin Mech Thermodyn. 2014;26:639–81. https://doi.org/10.1007/s00161-013-0322-9.

    Article  MathSciNet  MATH  Google Scholar 

  18. Madeo A, Barbagallo G, Collet M, D’Agostino MV, Miniaci M, Neff P. Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design. Math Mech Solids. 2018;23:1485–506. https://doi.org/10.1177/1081286517728423.

  19. Madeo A, Neff P, Ghiba ID, Placidi L, Rosi G. Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin Mech Thermodyn. 2015;27:551–70. https://doi.org/10.1007/s00161-013-0329-2.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Madeo, A. Della Corte, I. Giorgio, D. Scerrato, Modeling and designing micro- and nano-structured metamaterials: Towards the application of exotic behaviors, Math. Mech. Solids. 22 (2017) 1–12. https://doi.org/10.1177/1081286515616036.

  21. A. Aivaliotis, D. Tallarico, M.-V. D’Agostino, A. Daouadji, P. Neff, A. Madeo, Relaxed micromorphic broadband scattering for finite-size meta-structures – a detailed development, 2019;1–28. arXiv:9051.2297

  22. Barbagallo G, Tallarico D, D’Agostino MV, Aivaliotis A, Neff P, Madeo A. Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int J Solids Struct. 2019;162:148–63. https://doi.org/10.1016/j.ijsolstr.2018.11.033.

  23. Shaat M. A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos Struct. 2018;201:446–54. https://doi.org/10.1016/j.compstruct.2018.06.057.

    Article  Google Scholar 

  24. Shaat M, El Dhaba AR. On the equivalent shear modulus of composite metamaterials. Compos Part B Eng. 2019;172:506–15. https://doi.org/10.1016/j.compositesb.2019.05.056.

    Article  Google Scholar 

  25. El Dhaba AR. Reduced micromorphic model in orthogonal curvilinear coordinates and its application to a metamaterial hemisphere. Sci Rep. 2020;10:2846. https://doi.org/10.1038/s41598-020-59696-8.

    Article  Google Scholar 

  26. Shaat M, Ghavanloo E, Emam S. A micromorphic beam theory for beams with elongated microstructures. Sci Rep. 2020;10:7984. https://doi.org/10.1038/s41598-020-64542-y.

    Article  Google Scholar 

  27. El Dhaba AR, Mousavi SM. Analysis of planes within reduced micromorphic model. Sci Rep. 2021;11:1–21. https://doi.org/10.1038/s41598-021-94912-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaba, A.R.E., Lim, C.W. Dynamic Response of Composite Materials with 2D Reduced Micromorphic Model. Acta Mech. Solida Sin. 35, 603–615 (2022). https://doi.org/10.1007/s10338-021-00289-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00289-x

Keywords

Navigation