Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic slab segmentation due to brittle–ductile damage in the outer rise

Abstract

Subduction is the major plate driving force, and the strength of the subducting plate controls many aspects of the thermochemical evolution of Earth. Each subducting plate experiences intense normal faulting1,2,3,4,5,6,7,8,9 during bending that accommodates the transition from horizontal to downwards motion at the outer rise at trenches. Here we investigate the consequences of this bending-induced plate damage using numerical subduction models in which both brittle and ductile deformation, including grain damage, are tracked and coupled self-consistently. Pervasive slab weakening and pronounced segmentation can occur at the outer-rise region owing to the strong feedback between brittle and ductile damage localization. This slab-damage phenomenon explains the subduction dichotomy of strong plates and weak slabs10, the development of large-offset normal faults6,7 near trenches, the occurrence of segmented seismic velocity anomalies11 and distinct interfaces imaged within subducted slabs12,13, and the appearance of deep, localized intraplate areas of reduced effective viscosity14 observed at trenches. Furthermore, brittle–viscously damaged slabs show a tendency for detachment at elevated mantle temperatures. Given Earth’s planetary cooling history15, this implies that intermittent subduction with frequent slab break-off episodes16 may have been characteristic for Earth until more recent times than previously suggested17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of subduction and slab segmentation for a 40-million-year-old oceanic plate.
Fig. 2: Development of large-offset normal faults in the reference model and at the Japan Trench.
Fig. 3: Development of moderate-offset (throw ≤250 m) normal faults in the reference model and at the southeast portion of the Middle American Trench.
Fig. 4: Comparison of slab-segment width measured in the reference model and within the Japan slab.
Fig. 5: Comparison of modelled grain-size distribution in the reference model with seismic discontinuities in the Japan slab.

Similar content being viewed by others

Data availability

All input files used in the numerical modelling are available at https://doi.org/10.17605/OSF.IO/bnvthSource data are provided with this paper.

Code availability

The C and Matlab codes used for numerical experiments and visualization are available at https://doi.org/10.17605/OSF.IO/bnvth.

References

  1. Ranero, C. R., Phipps Morgan, J. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America Trench. Nature 425, 367–373 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ranero, C. R. & Sallarès, V. Geophysical evidence for hydration of the crust and mantle of the Nazca Plate during bending at the North Chile Trench. Geology 32, 549–552 (2004).

    Article  ADS  Google Scholar 

  3. Grevemeyer, I., Ranero, C. R., Flueh, E. R., Kläschen, D. & Bialas, J. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America Trench. Earth Planet. Sci. Lett. 258, 528–542 (2007).

    Article  ADS  CAS  Google Scholar 

  4. Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending related variations in tectonic pressure. Nat. Geosci. 2, 790–793 (2009).

    Article  ADS  CAS  Google Scholar 

  5. Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D. & Denyer, P. Structure and serpentinization of the subducting Cocos Plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosyst.12, Q06009 (2011).

    ADS  Google Scholar 

  6. Nakamura, Y., Kodaira, S., Miura, S., Regalla, C., Takahashi, N. High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan. Geophys. Res. Lett. 40, 1713–1718 (2013).

    Article  ADS  Google Scholar 

  7. Boston, B., Moore, G. F., Nakamura, Y. & Kodaira, S. Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth Planets Space 66, 135 (2014).

    Article  ADS  Google Scholar 

  8. Shillington, D. J. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci. 8, 961–964 (2015).

    Article  ADS  CAS  Google Scholar 

  9. Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Plant. Sci. Lett. 457, 1–9 (2017).

    Article  ADS  CAS  Google Scholar 

  10. Petersen, R. I., Stegman, D. R. & Tackley, P. J. The subduction dichotomy of strong plates and weak slabs. Solid Earth. https://doi.org/10.5194/se-2016-56 (2016).

  11. Tao, K., Grand, S. P. &Niu, F. Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography. Geochem. Geophys. Geosyst. 19, 2732–2763 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Kawakatsu, H. et al. Seismic evidence for sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci. 13, 822–827 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Freed, A. M. et al. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet. Sci. Lett. 459, 279–290 (2017).

    Article  ADS  CAS  Google Scholar 

  15. Herzberg, C. et al. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  ADS  CAS  Google Scholar 

  16. van Hunen, J. & van den Berg, A. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    Article  ADS  Google Scholar 

  17. Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    Article  ADS  CAS  Google Scholar 

  18. Zhong, S. & Davies, G. F. Effects of plate and slab viscosities on the geoid. Earth Plant. Sci. Lett. 170, 487–496 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Billen, M. I. & Gurnis, M. Constraints on subducting plate strength within the Kermadec Trench. J. Geophys. Res. 110, B05407 (2005).

    ADS  Google Scholar 

  20. van Summeren, J., Conrad, C. P. & Lithgow-Bertelloni, C. The importance of slab pull and a global asthenosphere to plate motions. Geochem. Geophys. Geosyst. 13, Q0AK03 (2012).

    Google Scholar 

  21. Garel, F. et al. Interaction of subducted slabs with the mantle transition‐zone: a regime diagram from 2‐D thermo‐mechanical models with a mobile trench and an overriding plate. Geochem. Geophys. Geosyst. 15, 1739–1765 (2014).

    Article  ADS  Google Scholar 

  22. Tao, W. C. & O’Connell, R. J. Deformation of a weak subducted slab and variation of seismicity with depth. Nature 361, 626–628 (1993).

    Article  ADS  Google Scholar 

  23. Wu, B., Conrad, C. P., Heuret, A., Lithgow-Bertelloni, C. & Lallemand,S. Reconciling strong slab pull and weak plate bending: the plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett. 272, 412–421 (2008).

    Article  ADS  CAS  Google Scholar 

  24. Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. Why is terrestrial subduction one-sided? Geology 36, 43–46 (2008).

    Article  ADS  Google Scholar 

  25. Čížková, H., van Hunen, J., van den Berg, A. P. & Vlaar, N. J. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett. 199, 447–457 (2002).

    Article  ADS  Google Scholar 

  26. Ribe, N. M. Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys. J. Int. 180, 559–576 (2010).

    Article  ADS  Google Scholar 

  27. Ghosh, A., Becker, T. W. & Zhong, S. J. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett. 37, L01301 (2010).

    Article  ADS  Google Scholar 

  28. Ranalli, G. Rheology of the Earth (Chapman and Hall, 1995).

  29. Funiciello, F. et al. Trench migration, net rotation and slab–mantle coupling. Earth Planet. Sci. Lett. 271, 233–240.

  30. Liu, L. & Stegman, D. R. Segmentation of the Farallon slab. Earth Planet. Sci. Lett. 311, 1–10 (2011).

    Article  ADS  CAS  Google Scholar 

  31. Craig, T. J., Copley, A. & Jackson, J. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int. 197, 63–89 (2014).

    Article  ADS  Google Scholar 

  32. Bercovici, D., Ricard, Y. Mechanisms for the generation of plate tectonics by two- phase grain-damage and pinning. Phys. Earth Planet. Inter. 202–203, 27–55 (2012).

    Article  ADS  Google Scholar 

  33. Mulyukova, E. & Bercovici, D. Formation of lithospheric shear zones: effect of temperature on two-phase grain damage. Phys. Earth Planet. Inter. 270, 195–212 (2017).

    Article  ADS  Google Scholar 

  34. Mulyukova, E. & Bercovici, D. Collapse of passive margins by lithospheric damage and plunging grain size. Earth. Planet. Sci. Lett. 484, 341–352 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Mulyukova, E. & Bercovici, D. The generation of of plate tectonics from grains to global scales: a brief review. Tectonics 38, 4058–4076 (2019).

  36. Bercovici, D. & Mulyukova, E. Evolution and demise of passive margins through grain mixing and damage. Proc. Natl Acad. Sci. USA 118, e2011247118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gurnis, M., Hall, C. & Lavier, L., Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004).

    Article  ADS  Google Scholar 

  38. Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991).

    Article  ADS  Google Scholar 

  39. Ranero, C. R., Villasenor, A., Morgan, J. P. & Weinrebe, W. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosyst. 6, Q12002 (2005).

    Article  ADS  Google Scholar 

  40. Lavier, L. L., Buck, W. R. & Poliakov, A. N. B. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res. 105, 23431–23442 (2000).

    Article  ADS  Google Scholar 

  41. Choi, E., Lavier, L. & Gurnis, M. Thermomechanics of mid-ocean ridge segmentation. Phys. Earth Planet. Inter. 171, 374–386 (2008).

    Article  ADS  Google Scholar 

  42. Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. Continental and oceanic core complexes. Geol. Soc. Am. Bull. 125, 273–298 (2013).

    Article  ADS  Google Scholar 

  43. Hirauchi, K., Fukushima, K., Kido, M., Muto, J. & Okamoto, A. Reaction-induced rheological weakening enables oceanic plate subduction. Nat. Commun. 7, 12550 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duretz, T. et al. The importance of structural softening for the evolution and architecture of passive margins. Sci. Rep. 6, 38704 (2016).

    Article  Google Scholar 

  45. John,T. et al. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nat. Geosci. 2, 137–140 (2009).

    Article  ADS  CAS  Google Scholar 

  46. Pozzi, G. et al. Coseismic ultramylonites: an investigation of nanoscale viscous flow and fault weakening during seismic slip. Earth Planet. Sci. Lett. 516, 164–175 (2019).

    Article  ADS  CAS  Google Scholar 

  47. Verberne, B. A. et al. Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone. Nat. Commun. 8, 1645 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Craig, T. J., Copley, A. & Middleton, T. A. Constraining fault friction in oceanic lithosphere using the dip angles. Earth Planet. Sci. Lett. 392, 94–99 (2014).

    Article  ADS  CAS  Google Scholar 

  49. Brace, W. F. & Kohlstedt, D. T. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 85, 6248–6252 (1980).

    Article  ADS  Google Scholar 

  50. Boston, B., Moore, G. F., Nakamura,Y. & Kodaira, S. Forearc slope deformation above the Japan Trench megathrust: implications for subduction erosion. Earth Planet. Sci. Lett. 462, 26–34 (2017).

    Article  ADS  CAS  Google Scholar 

  51. Boneh, Y. et al. Intermediate-depth earthquakes controlled by incoming plate hydration along bending-related faults. Geophys. Res. Lett. 46, 3688–3697 (2019).

    Article  ADS  Google Scholar 

  52. Naliboff, J. B., Billen, M. I., Gerya, T. & Saunders, J. Dynamics of outer rise faulting in oceanic–continental subduction systems. Geochem. Geophys. Geosyst.14, 2310–2327 (2013).

    Article  ADS  Google Scholar 

  53. Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    Article  ADS  CAS  Google Scholar 

  54. Honda, S. Strength of slab inferred from the seismic tomography and geologic history around the Japanese Islands. Geochem. Geophys. Geosyst. 15, 1333–1347 (2014).

    Article  ADS  Google Scholar 

  55. Turner, A. J., Katz, R. F. & Behn, M. D. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction. Geochem. Geophys. Geosyst.16, 925–946 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Gerya, T. V. & Yuen, D. A., Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).

    Article  ADS  Google Scholar 

  57. Gerya T. V. Introduction to Numerical Geodynamic Modelling 2nd edn (Cambridge Univ. Press, 2019).

  58. Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283, 1699–1706 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  61. Clauser, C. & Huenges, E. in Rock Physics and Phase Relations AGU Reference Shelf 3 (ed. Ahrens, T. J.) 105–126 (American Geophysical Union, 1995).

  62. Hirth, G. & Kohlstedt, D. in Subduction Factor Monograph Vol. 138 (ed. Eiler, J.) 83–105 (American Geophysical Union, 2003).

  63. Hilairet, N. B. et al. High‐pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318, 1910–1913 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Schmeling, H. et al. A benchmark comparison of spontaneous subduction models: Towards a free surface. Phys. Earth Planet. Inter. 171, 198–223 (2008).

    Article  ADS  Google Scholar 

  65. Gerya, T. V. & Yuen, D. A. Rayleigh–Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    Article  ADS  CAS  Google Scholar 

  66. Baitsch-Ghirardello, B., Gerya, T. V. & Burg, J.-P. Geodynamic regimes of intra-oceanic subduction: implications forearc extension vs. shortening processes. Gondwana Res. 25, 546–560 (2014).

    Article  ADS  Google Scholar 

  67. Katsura, T. & Ito, E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 663–670 (1989).

    Google Scholar 

  68. Ito, E. et al. Negative pressure–temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 2J9, 1275–1278 (1990).

    Article  ADS  Google Scholar 

  69. Ito, K. & Kennedy, G. C. in The Structure and Physical Properties of the Earth’s Crust Geophysical Monograph Series 14 (ed. Heacock, J. G.) 303–314 (American Geophysical Union, 1971).

  70. Bercovici, D. & Ricard, Y. Generation of plate tectonics with two-phase grain-damage and pinning: source–sink model and toroidal flow. Earth Planet. Sci. Lett. 365, 275–288 (2013).

    Article  ADS  CAS  Google Scholar 

  71. Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Bercovici, D., Schubert, G. & Ricard, Y. Abrupt tectonics and rapid slab detachment with grain damage. Proc. Natl Acad. Sci. USA 112, 1287–1291 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rozel, A., Ricard, Y. & Bercovici, D. A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys. J. Int. 184, 719–728 (2011).

    Article  ADS  Google Scholar 

  74. Hayes, P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by SNF projects 200021_182069 and 200021_192296 and ETH+ project BECCY (to T.V.G.) and NSF EAR-1853856 (to T.W.B.) and NSF EAR-1853184 (to D.B.). The simulations were performed on the ETH-Zurich Euler and Leonhard clusters.

Author information

Authors and Affiliations

Authors

Contributions

T.V.G. programmed the numerical code, designed the study and conducted the numerical experiments; D.B. formulated the grain size evolution algorithm and programmed the numerical code; and T.W.B. compiled and annotated Extended Data Figs. 7, 8 and provided related text. All authors discussed the results, problems and methods, and contributed to interpretation of the data and writing the paper.

Corresponding author

Correspondence to T. V. Gerya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Initial conditions for two types of subduction model explored in this study.

a, Model setup with free subducting plate detached from the right model boundary; subducting plate age changes to 1,000 yr linearly with the distance within 500 km at the right model boundary. b, Model setup with subducting plate attached to the right model boundary; subducting plate age does not change toward the boundary. White lines with numbers are isotherms in °C.

Extended Data Fig. 2 Influence of faults weakening and grain size evolution on subduction dynamics.

The distribution of the effective viscosity (left column, panels ad) and grain size in the mantle (right column, panels eh). a, e, Model with both faults weakening and grain size evolution (model xbeqc, Extended Data Table 2). b, f, Model with faults weakening but without grain size evolution (model xbeqca, Extended Data Table 2). c, g, Model with grain size evolution but without faults weakening (μ0 = μ1 = 0.6 for the lower oceanic crust and lithosphere-asthenosphere mantle, model xbeqcb, Extended Data Table 2). d, h, Model with neither fault weakening nor grain size evolution (μ0 = μ1 = 0.6 for the lower oceanic crust and lithosphere-asthenosphere mantle, model xbeqcc, Extended Data Table 2). Mantle temperature is taken 100 K higher than present day values. Other parameters are the same as in the reference model (Fig. 1). Solid black lines indicate position of 1225 °C isotherm.

Extended Data Fig. 3 Influence of model parameters on subduction dynamics in models with standard grain size evolution.

The distribution of the effective viscosity (left column, panels ad) and grain size in the mantle (right column, panels eh). a, e, Failed subduction initiation in the model with 40 Ma subducting plate but without faults weakening (μ0 = μ1 = 0.6 for the lower oceanic crust and lithosphere-asthenosphere mantle, hmax = 6 mm for the grain size color code, model xbeqab, Extended Data Table 2). b, f, No slab segmentation in the model with 40 Myr old slab but with 2.5 times slower rate of faults weakening with strain (hmax = 10 mm, model xbes, Extended Data Table 2). c, g, Reference slab segmentation model with 40 Myr subducting plate and standard faults weakening (hmax = 6 mm, model xbeq, Fig. 1, Extended Data Table 2). d, h, Wider slab segments in the model with 100 Myr old slab and standard fault weakening (hmax = 10 mm, model xber, Extended Data Table 2). Mantle temperature is taken at present day values. Other parameters are the same as in the reference model (Fig. 1). Solid black lines indicate position of 1225 °C isotherm.

Extended Data Fig. 4 Influence of grain size evolution and faults weakening on subduction dynamics.

The distribution of the effective viscosity (left column, panels ad) and grain size in the mantle (right column, panels eh). a, e, Model with both fault weakening and grain size evolution (40 Myr old slab, model xbeqd, Extended Data Table 2). b, f, Model with fault weakening but without grain size evolution (40 Myr old slab, model xbeqda, Extended Data Table 2). c, g, Model with both fault weakening and grain size evolution (100 Myr old slab, model xbeqq, Extended Data Table 2). d, h, Model with grain size evolution but without fault weakening (100 Myr old slab, model xbeqs, Extended Data Table 2). Mantle potential temperature in a, b, e, f is 150 K higher than present day values. Other parameters are the same as in the reference model (Fig. 1). Solid black lines indicate position of 1225 °C isotherm.

Extended Data Fig. 5 Influence of pre-existing faults in the subducting plate on slab segmentation and subduction dynamics.

a, e, Model with 20 km spaced faults dipping toward the trench (model xbeql, Extended Data Table 2). b, f, Model with 10 km spaced faults dipping toward the trench (model xbeqm, Extended Data Table 2). c, g, Model with 5 km spaced faults dipping toward the trench (model xbeqn, Extended Data Table 2). d, h, Model with 10 km spaced faults dipping outward the trench (model xbeqo, Extended Data Table 2). Pre-existing faults are prescribed as 1 km wide and 14 km deep zones of weak basaltic crust and serpentinized mantle within stronger gabbroic crust and lithospheric mantle, respectively (Extended Data Table 1). Initial fault dip is 63°.

Extended Data Fig. 6 Gradual development of large-offset normal faults in the reference model (Fig. 1).

ad, Distribution of the plastic strain γ (regions with γ > 0.02 are shown) and mantle grain size in the lithosphere. Solid white line indicates position of the reference surface along which fault throws are evaluated (Methods). eh, Fault throw distribution for respective time steps shown in ad. Only faults with throw >20 m are considered.

Source data

Extended Data Fig. 7 Positions of five along-dip seismic tomography profiles (blue solid lines with circles) for the Japan slab analysed in Fig. 4c, d and Extended Data Fig. 8.

Colour code corresponds to slab upper surface based on seismicity depths from SLAB2.0 model74. Solid blue lines show positions of plate boundaries75.

Extended Data Fig. 8 Tomographic images for five analyzed (Fig. 4d, Methods) seismic tomography profiles of the Japan slab (Extended Data Fig. 7).

The distribution of vp (left column, panels ae) and vs (right column, panels fj) seismic velocity anomaly is based on the tomography model of Tao et al.13. Positions of segment boundaries (red triangles) defined along the middle-slab line (red solid lines) are inferred on the basis of visual inspection (Methods).

Extended Data Table 1 Physical properties of rocks58,59,60,61,62,63 used in numerical experiments
Extended Data Table 2 Conditions and results of numerical experiments

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerya, T.V., Bercovici, D. & Becker, T.W. Dynamic slab segmentation due to brittle–ductile damage in the outer rise. Nature 599, 245–250 (2021). https://doi.org/10.1038/s41586-021-03937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03937-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing