Skip to main content
Log in

Effects of the main zonal harmonics on optimal low-thrust limited-power transfers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work considers the development of a numerical-analytical procedure for computing optimal time-fixed low-thrust limited-power transfers between arbitrary orbits. It is assumed that Earth’s gravitational field is described by the main three zonal harmonics J2, J3 and J4. The optimization problem is formulated as a Mayer problem of optimal control with the state variables defined by the Cartesian elements—components of the position vector and the velocity vector—and a consumption variable that describes the fuel spent during the maneuver. Pontryagin Maximum Principle is applied to determine the optimal thrust acceleration. A set of classical orbital elements is introduced as a new set of state variables by means of an intrinsic canonical transformation defined by the general solution of the canonical system described by the undisturbed part of the maximum Hamiltonian. The proposed procedure involves the development of a two-stage algorithm to solve the two-point boundary value problem that defines the transfer problem. In the first stage of the algorithm, a neighboring extremals method is applied to solve the “mean” two-point boundary value problem of going from an initial orbit to a final orbit at a prescribed final time. This boundary value problem is described by the mean canonical system that governs the secular behavior of the optimal trajectories. The maximum Hamiltonian function that governs the mean canonical system is computed by applying the classic concept of “mean Hamiltonian”. In the second stage, the well-known Newton–Raphson method is applied to adjust the initial values of adjoint variables when periodic terms of the first order are included. These periodic terms are recovered by computing the Poisson brackets in the transformation equations, which are defined between the original set of canonical variables and the new set of average canonical variables, as described in Hori method. Numerical results show the main effects on the optimal trajectories due to the zonal harmonics considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rayman MD, Varghese P, Lehman DH, Livesay LL (2000) Results from the Deep Space 1 technology validation mission. Acta Astronaut 47(2–9):475–487. https://doi.org/10.1016/s0094-5765(00)00087-4

    Article  Google Scholar 

  2. Racca GD, Marini A, Stagnaro L, van Dooren J, di Napoli L, Foing BH, Lumb R, Volp J, Brinkmann J, Grünagel R et al (2002) SMART-1 mission description and developments status. Planet Space Sci 50:1323–1336. https://doi.org/10.1016/S0032-0633(02)00123-X

    Article  Google Scholar 

  3. Camino O, Alonso M, Blake R, Milligan D, Bruin JD, Ricken S (2005) SMART-1: Europe's lunar mission paving the way for new cost effective ground operations (RCSGSO). In: Sixth international symposium reducing the costs of spacecraft ground systems and operations (RCSGSO), European Space Agency ESA SP-601; Darmstadt, Germany

  4. Kawaguchi J, Fujiwara A, Uesugi T (2008) Hayabusa—its technology and science accomplishment summary and Hayabusa-2. Acta Astronaut 62:639–647. https://doi.org/10.1016/j.actaastro.2008.01.028

    Article  Google Scholar 

  5. Morante D, Rivo MS, Soler M (2021) A survey on low-thrust trajectory optimization approaches. Aerospace 8(88):2–39

    Google Scholar 

  6. Funase R, Koizumi H, Nakasuka S, Kawakatsu Y, Fukushima Y, Tomiki A et al (2014) 50kg-class deep space exploration technology demonstration micro-spacecraft PROCYON. In: 28th annual AIAA/USU conference on small satellites, SSC14-VI-3

  7. Folta DC, Bosanac N, Cox A, Howell KC (2016) The Lunar IceCube mission design: construction of feasible transfer trajectories with a constrained departure. AAS/AIAA Space Flight Mechanics Meeting, AAS 16–285, Napa

  8. Gobetz FW (1965) A linear theory of optimum low-thrust rendezvous trajectories. J Astronaut Sci 12(3):69–74

    Google Scholar 

  9. Edelbaum TN (1965) Optimum power-limited orbit transfer in strong gravity fields. AIAA J 3(5):921–925. https://doi.org/10.2514/3.3016

    Article  MathSciNet  Google Scholar 

  10. Edelbaum TN (1966) An asymptotic solution for optimum power limited orbit transfer. AIAA J 4(8):1491–1494. https://doi.org/10.2514/3.3725

    Article  MATH  Google Scholar 

  11. Marec JP, Vinh NX (1980) Étude generale des transferts optimaux a poussee faible et puissance limitee entre orbites elliptiques quelconques. ONERA Publication 1980–1982

  12. Haissig CM, Mease KD, Vinh NX (1993) Minimum-fuel, power-limited transfers between coplanar elliptical orbits. Acta Astronaut 29(1):1–15. https://doi.org/10.1016/0094-5765(93)90064-4

    Article  Google Scholar 

  13. Geffroy S, Epenoy R (1997) Optimal low-thrust transfers with constraints-generalization of averaging techniques. Acta Astronaut 41(3):133–149. https://doi.org/10.1016/s0094-5765(97)00208-7

    Article  Google Scholar 

  14. Bonnard B, Caillau JB, Dujol R (2006) Averaging and optimal control of elliptic Keplerian orbits with low propulsion. Syst Control Lett 55(9):755–760. https://doi.org/10.1016/j.sysconle.2006.03.004

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang W (2012) Solving coplanar power-limited orbit transfer problem by primer vector approximation method. Int J Aerosp Eng. https://doi.org/10.1155/2012/480320

    Article  Google Scholar 

  16. Da Silva Fernandes S, Das Chagas Carvalho F, Romão Bateli JV (2018) A numerical-analytical approach based on canonical transformations for computing optimal low-thrust transfers. Revista Mexicana de Astronomía y Astrofísica 54(1):111–128

    Google Scholar 

  17. Li H, Chen S, Baoyin H (2018) J2-Perturbed multitarget rendezvous optimization with low thrust. J Guid Control Dyn 41(3):802–808. https://doi.org/10.2514/1.g002889

    Article  Google Scholar 

  18. Kelchner MJ, Kluever CA (2020) Rapid evaluation of low-thrust transfers from elliptical orbits to geostationary orbit. J Spacecr Rocket. https://doi.org/10.2514/1.a34630

    Article  Google Scholar 

  19. Di Carlo M, Romero Martin JM, Vasile M (2017) CAMELOT: computational-analytical multi-fidElity low-thrust optimisation toolbox. CEAS Sp J 10(1):25–36. https://doi.org/10.1007/s12567-017-0172-6

    Article  Google Scholar 

  20. Hori GI (1966) Theory of general perturbation with unspecified canonical variable. Publ Astron Soc Jpn 18(4):287–296

    Google Scholar 

  21. Chobotov VA (2002) Orbital mechanics, 3rd edn. AIAA, Reston, p 447

    Google Scholar 

  22. Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Company, Waltham, Toronto and London, p 124

    MATH  Google Scholar 

  23. Osório, JP (1973) Perturbações de órbitas de satélites no estudo do campo gravitacional terrestre. Publicações do Observatório Astronômico Prof. Manuel de Barros, Universidade do Porto, Porto, Imprensa Portuguesa, p 127

  24. Marec JP (1979) Optimal space trajectories. Elsevier, New York

    MATH  Google Scholar 

  25. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) Mathematical theory of optimal processes. John Wiley, New York, p 360

    Google Scholar 

  26. Battin RH (1987) An introduction to the mathematics and methods of astrodynamics. American Institute of Aeronautics and Astronautics, New York, p 796

    MATH  Google Scholar 

  27. Bate RR, Mueller DD, White JE (2013) Fundamentals of astrodynamics. Dover Publications Inc, New York, p 455

    Google Scholar 

  28. Da Silva FS (1994) Generalized canonical systems—I. General properties. Acta Astronaut 32:331–338. https://doi.org/10.1016/0094-5765(94)90154-6

    Article  Google Scholar 

  29. Vallado DA (2007) Fundamentals of astrodynamics and applications, 3rd edn. Springer, New York, p 1055

    MATH  Google Scholar 

  30. Levallois JJ, Kovalevsky J (1971) Géodésie Générale, Tome IV, Géodésie Spatiale, Eyrolles, Paris

  31. Longmuir AG, Bohn EV (1969) Second-variation methods in dynamic optimization. J Optim Theory Appl 3(3):164–173. https://doi.org/10.1007/bf00929441

    Article  MathSciNet  MATH  Google Scholar 

  32. Breakwell JV, Speyer JL, Bryson AE (1963) Optimization and control of nonlinear systems using the second variation. J Soc Ind Appl Math Ser A Control 1(2):193–223. https://doi.org/10.1137/0301011

    Article  MATH  Google Scholar 

  33. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Springer, New York, p 744. https://doi.org/10.1007/978-0-387-21738-3

    Book  MATH  Google Scholar 

  34. Da Silva Fernandes S, Das Chagas Carvalho F (2019) Effects of the zonal harmonics J2, J3 and J4 on optimal low-thrust trajectories. In: 25th International Congress of Mechanical Engineering—COBEM 2019. doi: https://doi.org/10.26678/ABCM.COBEM2019.COB2019-0356

  35. Brouwer D (1959) Solution of the problem of artificial satellite theory without drag. Astron J 64:378–397

    Article  MathSciNet  Google Scholar 

  36. Kozai Y (1959) The motion of a close earth satellite. Astron J 64:367–377

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been supported by CNPq under contract 301875/2017-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco das Chagas Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Flavio Silvestre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Fernandes, S., das Chagas Carvalho, F. Effects of the main zonal harmonics on optimal low-thrust limited-power transfers. J Braz. Soc. Mech. Sci. Eng. 43, 523 (2021). https://doi.org/10.1007/s40430-021-03229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03229-5

Keywords

Navigation