Simulation of acetone-water explosion in hydrothermal extraction reactor

https://doi.org/10.1016/j.csite.2021.101631Get rights and content
Under a Creative Commons license
open access

Abstract

This work investigates possible factors that lead to acetone-water explosion in a hydrothermal extraction reactor that happened in our laboratory. To begin with, acetone-water reactivity was checked in CAMEO. Next, pressure build-up curves at varying operating conditions were simulated in Aspen Batch Modeler. Analysis of variance (ANOVA) was conducted in IBM SPSS Statistical Software to determine the most significant factors causing the explosion. Results from CAMEO showed that the explosion was a boiling liquid expanding vapour explosion (BLEVE). Outputs from Aspen simulation indicated that the reactor pressure rise increased with the increment of acetone ratio, heating temperature and reactant total volume. The reactor wall ruptured as the pressure exceeded the maximum allowable working pressure. IBM SPSS showed that the heating temperature was the most significant factor causing the pressure to build-up within the reactor, followed by the acetone-water ratio and total reactant volume. Among all three factors, the heating temperature added to largest pressure build-up, especially when the temperature was increased near to 360 °C. The time required to trigger explosion was predicted to be within 13.8–15 min of heating.

ANOVA
Analysis of variance
CAMEO
Computer-Assisted Mechanistic Evaluation of Organic Reactions
CSB
Chemical Safety Board
EPA
Environmental Protection Agency
ID
Inner diameter
OD
Outer diameter
SCW
Subcritical water extraction
SOP
Standard operating procedures
BLEVE
Boiling liquid expanding vapour explosion
NOAA
National Oceanic and Atmospheric Administration

Keywords

Hydrothermal extraction
Water-acetone solvent
Boiling liquid expanding vapour explosion
Thermal explosion

Cited by (0)