Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Data-driven discovery of a universal indicator for metallic glass forming ability

Abstract

Despite the importance of glass forming ability as a major alloy characteristic, it is poorly understood and its quantification has been experimentally laborious and computationally challenging. Here, we uncover that the glass forming ability of an alloy is represented in its amorphous structure far away from equilibrium, which can be exposed by conventional X-ray diffraction. Specifically, we fabricated roughly 5,700 alloys from 12 alloy systems and characterized the full-width at half-maximum, Δq, of the first diffraction peak in the X-ray diffraction pattern. A strong correlation between high glass forming ability and a large Δq was found. This correlation indicates that a large dispersion of structural units comprising the amorphous structure is the universal indicator for high metallic glass formation. When paired with combinatorial synthesis, the correlation enhances throughput by up to 100 times compared to today’s state-of-the-art combinatorial methods and will facilitate the discovery of bulk metallic glasses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart illustrating the present combinatorial method and the obtained dataset.
Fig. 2: Correlation of Δq and GFA.
Fig. 3: Effectiveness of the present and previous methods for BMG development.
Fig. 4: Example of Δq–GFA strategy to rapidly identify best glass former in an alloy system.
Fig. 5: Correlation length evaluated by the number of atoms for the alloys identified as glass.
Fig. 6: Comparison of experimentally measured Δq with structural characteristics revealed by molecular dynamics simulations for ZrCuAl alloys.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are included within the paper and its Supplementary Information file.

References

  1. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  CAS  Google Scholar 

  2. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  3. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  4. Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969).

    Article  CAS  Google Scholar 

  5. Lu, Z. P. & Liu, C. T. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).

    Article  CAS  Google Scholar 

  6. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  7. Guo, S., Lu, Z. P. & Liu, C. T. Identify the best glass forming ability criterion. Intermetallics 18, 883–888 (2010).

    Article  CAS  Google Scholar 

  8. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  9. Jakse, N. & Pasturel, A. Glass forming ability and short-range order in a binary bulk metallic glass by ab initio molecular dynamics. Appl. Phys. Lett. 93, 113104 (2008).

    Article  Google Scholar 

  10. Ma, D., Stoica, A. D. & Wang, X. L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30–34 (2009).

    Article  CAS  Google Scholar 

  11. Cheng, Y. Q., Ma, E. & Sheng, H. W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).

    Article  CAS  Google Scholar 

  12. Fujita, T. et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).

    Article  CAS  Google Scholar 

  13. Ashby, M. F. & Greer, A. L. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).

    Article  CAS  Google Scholar 

  14. Schroers, J. Processing of bulk metallic glass. Adv. Mater. 22, 1566–1597 (2010).

    Article  CAS  Google Scholar 

  15. Saotome, Y., Itoh, K., Zhang, T. & Inoue, A. Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541–1545 (2001).

    Article  CAS  Google Scholar 

  16. Li, Y. L., Zhao, S. F., Liu, Y. H., Gong, P. & Schroers, J. How many bulk metallic glasses are there? ACS Comb. Sci. 19, 687–693 (2017).

    Article  CAS  Google Scholar 

  17. Li, M. X. et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 569, 99–103 (2019).

    Article  CAS  Google Scholar 

  18. Ding, S. Y. et al. Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 494–500 (2014).

    Article  CAS  Google Scholar 

  19. Liu, J. B. et al. Fast screening of corrosion trends in metallic glasses. ACS Comb. Sci. 21, 666–674 (2019).

    Article  Google Scholar 

  20. Zhang, H. T. et al. Combinatorial temperature resistance sensors for the analysis of phase transformations demonstrated for metallic glasses. Acta Mater. 156, 486–495 (2018).

    Article  CAS  Google Scholar 

  21. McCluskey, P. J. & Vlassak, J. J. Glass transition and crystallization of amorphous Ni-Ti-Zr thin films by combinatorial nano-calorimetry. Scr. Mater. 64, 264–267 (2011).

    Article  CAS  Google Scholar 

  22. Li, Y., Guo, Q., Kalb, J. A. & Thompson, C. V. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008).

    Article  CAS  Google Scholar 

  23. Deng, Y. P. et al. A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15, 1208–1216 (2007).

    Article  CAS  Google Scholar 

  24. Schnabel, V. et al. Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: a combinatorial approach. Acta Mater. 107, 213–219 (2016).

    Article  CAS  Google Scholar 

  25. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, 1566 (2018).

    Article  Google Scholar 

  26. Liu, Y. H., Fujita, T., Aji, D. P. B., Matsuura, M. & Chen, M. W. Structural origins of Johari-Goldstein relaxation in a metallic glass. Nat. Commun. 5, 3238 (2014).

    Article  CAS  Google Scholar 

  27. Yokoyama, Y., Yamasaki, T., Liaw, P. K. & Inoue, A. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys. Acta Mater. 56, 6097–6108 (2008).

    Article  CAS  Google Scholar 

  28. Zhang, W. & Inoue, A. High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 21, 234–241 (2006).

    Article  CAS  Google Scholar 

  29. Dai, C. L., Guo, H., Li, Y. & Xu, J. A new composition zone of bulk metallic glass formation in the Cu-Zr-Ti ternary system and its correlation with the eutectic reaction. J. Non-Cryst. Solids 354, 3659–3665 (2008).

    Article  CAS  Google Scholar 

  30. Zhu, Z. W., Zhang, H. F., Ding, B. Z. & Hu, Z. Q. Synthesis and properties of bulk metallic glasses in the ternary Ni-Nb-Zr alloy system. Mater. Sci. Eng. A 492, 221–229 (2008).

    Article  Google Scholar 

  31. Ma, H., Zheng, Q., Xu, J., Li, Y. & Ma, E. Doubling the critical size for bulk metallic glass formation in the Mg-Cu-Y ternary system. J. Mater. Res. 20, 2252–2255 (2005).

    Article  CAS  Google Scholar 

  32. Zhang, Q., Zhang, W., Xie, G. Q. & Inoue, A. Glass-forming ability and mechanical properties of the ternary Cu-Zr-Al and quaternary Cu-Zr-Al-Ag bulk metallic glasses. Mater. Trans. 48, 1626–1630 (2007).

    Article  CAS  Google Scholar 

  33. Cui, X. et al. Centimeter-sized CuZrAl bulk metallic glass with good plasticity and chemical heterogeneity. Intermetallics 121, 106773 (2020).

    Article  CAS  Google Scholar 

  34. Na, J. H. et al. Compositional landscape for glass formation in metal alloys. Proc. Natl Acad. Sci. USA 111, 9031–9036 (2014).

    Article  CAS  Google Scholar 

  35. Elliott, S. R. Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids 182, 40–48 (1995).

    Article  CAS  Google Scholar 

  36. Sinha, A. K. & Duwez, P. Radial distribution function of amorphous Ni-Pt-P alloys. J. Phys. Chem. Solids 32, 267–277 (1971).

    Article  CAS  Google Scholar 

  37. Sokolov, A. P., Kisliuk, A., Soltwisch, M. & Quitmann, D. Medium-range order in glasses—comparison of Raman and diffraction measurements. Phys. Rev. Lett. 69, 1540–1543 (1992).

    Article  CAS  Google Scholar 

  38. Li, M., Wang, C. Z., Hao, S. G., Kramer, M. J. & Ho, K. M. Structural heterogeneity and medium-range order in ZrxCu100-x metallic glasses. Phys. Rev. B. 80, 184201 (2009).

    Article  Google Scholar 

  39. Ward, L., Miracle, D., Windl, W., Senkov, O. N. & Flores, K. Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations. Phys. Rev. B. 88, 134205 (2013).

    Article  Google Scholar 

  40. Egami, T. & Waseda, Y. Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113–134 (1984).

    Article  CAS  Google Scholar 

  41. Ma, D. et al. Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B. 80, 014202 (2009).

    Article  Google Scholar 

  42. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lon Ser.-A. 215, 43–46 (1952).

    Article  CAS  Google Scholar 

  43. Bernal, J. D. Geometrical approach to the structure of liquids. Nature 183, 141–147 (1959).

    Article  CAS  Google Scholar 

  44. Mattern, N. et al. Structural behavior of CuxZr100-x metallic glass (x = 35-70). J. Non-Cryst. Solids 354, 1054–1060 (2008).

    Article  CAS  Google Scholar 

  45. Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    Article  CAS  Google Scholar 

  46. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  CAS  Google Scholar 

  47. Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    Article  CAS  Google Scholar 

  48. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  49. Ma, E. Tuning order in disorder. Nat. Mater. 14, 547–552 (2015).

    Article  CAS  Google Scholar 

  50. Perim, E. et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Zhao for experimental assistance in making the ZrCuCr master alloys. The work was financially supported by National Key Research and Development Program of China (grant no. 2018YFA0703600), National Natural Science Foundation of China (grant nos. 51825104, 51801230, 51801095, 11790291 and 61888102), CAS project (grant no. XDB30000000) and the Center for Materials Genome. J.S. and S.S. thank the NSF-DMR (grant no. 2104316).

Author information

Authors and Affiliations

Authors

Contributions

Y.H.L. conceived and supervised the research. Y.H.L. and M.X.L. designed the research with advice from W.H.W. and J.S. M.X.L. and C.W. conducted the experiments with assistance from L.W.H. Y.T.S. and M.X.L. performed XRD pattern processing. Y.T.S. carried out molecular dynamics simulations. S.S. assisted in the literature review and preparation of bulk samples. All authors contributed to the analyses and interpretation of the data. M.X.L., Y.T.S., J.S. and Y.H.L. wrote the paper with input and comments from all authors.

Corresponding author

Correspondence to Yan-Hui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks S. Poon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Table 1, Data Analysis Procedure and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MX., Sun, YT., Wang, C. et al. Data-driven discovery of a universal indicator for metallic glass forming ability. Nat. Mater. 21, 165–172 (2022). https://doi.org/10.1038/s41563-021-01129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01129-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing