Skip to main content
Log in

On the Mechanism of Ionic-Cluster Excitation of Argon Levels in Molecular Gas Mixtures

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, the features of the process of argon radiation mixed with molecular and atomic impurities in condensing supersonic jets are studied experimentally. The mixture particles were activated by a well-focused electron beam. The dependence of the radiation intensity of individual argon lines on the gas-dynamic parameters in the jet is studied by changing the total density of the gas mixture due to changes in the stagnation pressure in the gas source chamber. The anomalous increase in the radiation intensity in a certain pressure range, which is different for different compositions of mixtures, was recorded on individual lines of atomic argon (Ar-I). At the same time, a similar effect was not detected in the spectrum of argon ions (Ar-II). It is established that anomaly was caused by the highly efficient molecular cluster mechanism of selective excitation of individual levels of argon atoms. It is absent in non-condensing jets and weakens at the stage of formation of large clusters. The main channels of energy transmission are discussed. The empirical model of the excitation-radiation process based on the obtained data was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khmel SY, Sharafutdinov RG (2000) Abstracts of invited lectures and contributed papers of 15th ESCAMPIG. Hungary 24A:384

    Google Scholar 

  2. Sharafutdinov RG, Khmel SY (2003) Plasma Chem Plasma Process 23(3):463–488. https://doi.org/10.1023/A:1023230931546

    Article  CAS  Google Scholar 

  3. Golomb D, Good RE (1986) J Chem Phys 49:4176–4180. https://doi.org/10.1063/1.1670732

    Article  Google Scholar 

  4. Madirbaev VZh, Zarvin AE, Korobeishchikov NG, Sharafutdinov RG (2002) Phys Solid State 44(3):515–517. https://doi.org/10.1134/1.1462691

    Article  CAS  Google Scholar 

  5. Madirbaev VGh, Zarvin AE, Korobeishchikov NG (2013) In: XXXI International Conference on Phenomena in Ionized Gases (ICPIG XXXI Granada), PS2–085

  6. Zarvin AE, Madirbaev VZh, Korobeishchikov NG (2014) In: XXI International Conference on Chemical Reactors (CHEMREACTOR‐21)

  7. Dubrovin KA, Zarvin AE, Kalyada VV, Yaskin AS (2020) Tech Phys Lett 46(4):337–340. https://doi.org/10.1134/S1063785020040057

    Article  Google Scholar 

  8. Zarvin AE, Khudozhitkov VE, Dubrovin KA, Kalyada VV, Yaskin AS (2020). J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1683/3/032008

    Article  Google Scholar 

  9. Zarvin AE, Kalyada VV, Korobeishchikov NG, Khodakov MD, Shmakov AA (2016) Instrum Exp Tech 59(2):294–301. https://doi.org/10.1134/S0020441216010176

    Article  Google Scholar 

  10. Zarvin AE, Kalyada VV, Madirbaev VZh, Korobeishchikov NG, Khodakov MD, Yaskin AS, Khudozhitkov VE, Gimelshein SF (2017) IEEE Transact Pl Sci 45(5):819–827. https://doi.org/10.1109/TPS.2017.2682901

    Article  CAS  Google Scholar 

  11. Korobeishchikov NG, Zarvin AE, Madirbaev VZh (2004) Tech Phys 49(8):973–981

    Article  CAS  Google Scholar 

  12. Kazakov VV, Kazakov VG, Kovalev VS, Meshkov OI, Yatsenko AS (2017) Phys Scr 92:105002. https://doi.org/10.1088/1402-4896/aa822e

    Article  CAS  Google Scholar 

  13. Bier K, Hagena O (1966) In: Rarefied Gas Dynamics. Adv Appl Mech: Proc. 4-th Internat. Symp., N.Y.-London, Acad. Press. p 2:260–278

  14. Campargue R (1984) J Phys Chem 88(20):4466–4474

    Article  CAS  Google Scholar 

  15. Biordi C (1977) Prog Energy Combust Sci 3(3):151–173

    Article  CAS  Google Scholar 

  16. Crunelle B, Surdyk D, Pauwels JF, Sochet LR (1997) J Chem Phys 94:433–459

    CAS  Google Scholar 

  17. Even U (2014) Adv Chem 2014:636042. https://doi.org/10.1155/2014/636042

    Article  Google Scholar 

  18. Smith JA, Driscoll JF (1975) J Fluid Mech 72(4):695–719

    Article  Google Scholar 

  19. Zarvin AE, Khudozhitkov VE, Kalyada VV (2018) In: IOP Conf. Ser.: Mater. Sci. Eng. 387:012086. https://doi.org/10.1088/1757-899X/387/1/012086

  20. Khudozhitkov VE, Zarvin AE, Kalyada VV (2018) J Phys: Conf Ser 1105:012112. https://doi.org/10.1088/1742-6596/1105/1/012112

    Article  CAS  Google Scholar 

  21. Korobeishchikov NG, Zarvin AE, Madirbaev VZh, Sharafutdinov RG (2005) Pl Chem Pl Proc 25(4):319–349. https://doi.org/10.1007/s11090-004-3132-9

    Article  CAS  Google Scholar 

  22. Hagena OF, Obert W (1972) J Chem Phys 56(5):1793–1802. https://doi.org/10.1063/1.1677455

    Article  CAS  Google Scholar 

  23. Zarvin AE, Madirbaev VZh, Korobeishchikov NG, Gartvich GG, Sharafutdinov RG (2005) Tech Phys 50(11):1444–1450

    Article  CAS  Google Scholar 

  24. Korobeishchikov NG, Zarvin AE, Kalyada VV, Schmakov AA (2012) Adv Mater Phys Chem 2:31–34. https://doi.org/10.4236/ampc.2012.24B009

    Article  Google Scholar 

  25. Golomb D, Good RE, Bailey AB, Busby MR, Dawbarn R (1972) J Chem Phys 57(9):3844–3852. https://doi.org/10.1063/1.1678854

    Article  CAS  Google Scholar 

  26. Smirnov BM (2003) Physics – uspekhi 46(6):589–628. https://doi.org/10.1070/PU2003v046n06ABEH001381

  27. Zarvin AE, Kalyada VV, Khudozhitkov VE (2017) Thermophys Aeromech 24(5):671–681. https://doi.org/10.1134/S0869864317050031

    Article  Google Scholar 

  28. Bird GA (1976) Phys Fluids 19:1486–1491. https://doi.org/10.1063/1.861351

    Article  CAS  Google Scholar 

  29. Zarvin AE, Sharafutdinov RG (1979) Rarefied Gas Dynamics. Ed. R. Campargue. Paris, France. In: Proceedings of 11-th International Symposium, V. II, p 991–1000

  30. Verheijen MJ, Beijerinck HCW, Renes WA, Verster NF (1984) Chem Phys 85(1):63–71. https://doi.org/10.1016/S0301-0104(84)85173-3

    Article  CAS  Google Scholar 

  31. Schütte S, Buck U (2002) Intern J Mass Spectrom 220(2):183–192

    Article  Google Scholar 

  32. NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/ doi: https://doi.org/10.18434/T4D303

  33. Hagena OF (1981) Surf Sci 106(1–3):101–116. https://doi.org/10.1016/0039-6028(81)90187-4

    Article  CAS  Google Scholar 

  34. Buck U, Krohne R (1996) J Chem Phys 105(13):5408–5415. https://doi.org/10.1063/1.472406

    Article  CAS  Google Scholar 

  35. Striganov AR, Sventitskii NS (1968) Plenum, N.Y. https://doi.org/10.1016/0584-8547(69)80033-9

  36. Berry RS, Smirnov BM (2007) Physics – Uspekhi 48(4):345–388. https://doi.org/10.1070/PU2005v048n04ABEH002022

  37. Zhukhovitskii DI (1995) J Chem Phys 103:9401–9407. https://doi.org/10.1063/1.470000

    Article  CAS  Google Scholar 

  38. Bernstein ER (1995) Annu Rev Phys Chem 46:197–222

    Article  CAS  Google Scholar 

  39. Baletto F, Ferrando R (2005) Rev Mod Phys 77(1):371–423

    Article  CAS  Google Scholar 

  40. Lundwall M, Lindblad A, Bergersen H, Rander T, Öhrwall G, Tchaplyguine M, Peredkov S, Svensson S, Björneholm O (2006) J Phys B: At Mol Opt Phys 39:3321–3333. https://doi.org/10.1088/0953-4075/39/16/015

    Article  CAS  Google Scholar 

  41. Lundwall M, Fink RF, Tchaplyguine M, Lindblad A, Öhrwall G, Bergersen H, Peredkov S, Rander T, Svensson S, Björneholm O (2006) J Phys B: At Mol Opt Phys 39:5225–5235. https://doi.org/10.1088/0953-4075/39/24/018

    Article  CAS  Google Scholar 

  42. Malins A, Williams SR, Eggers J, Tanaka H, Royall CP (2011) J Non-Cryst Solids 357(2):760–766. https://doi.org/10.1016/j.jnoncrysol.2010.08.021

    Article  CAS  Google Scholar 

  43. Richter C, Hollas D, Saak CM, Förstel M, Miteva T, Mucke M, Björneholm O, Sisourat N, Slavíček P, Hergenhahn U (2018) Nat Commun 9:4988. https://doi.org/10.1038/s41467-018-07501-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aladi M, Bolla R, Rácz P, Földes IB (2016) Nucl Instr Meth. In: Phys Res B, 369:68–71. https://doi.org/10.1016/j.nimb.2015.10.061

Download references

Acknowledgements

The study was conducted using the shared equipment at the Applied Physics Centre at NSU’s Physics Department with the financial support of the RFBR (grant no. 20-01-00332) and the Ministry of science and higher education of the Russian Federation, (project number FSUS-2020-0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Zarvin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarvin, A.E., Madirbaev, V.Z., Dubrovin, K.A. et al. On the Mechanism of Ionic-Cluster Excitation of Argon Levels in Molecular Gas Mixtures. Plasma Chem Plasma Process 42, 247–265 (2022). https://doi.org/10.1007/s11090-021-10214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10214-2

Keywords

Navigation